Nonexistence of solutions for elliptic equations with supercritical nonlinearity in nearly nontrivial domains

被引:4
|
作者
Molle R. [1 ]
Passaseo D. [2 ]
机构
[1] Dipartimento di Matematica, Università di Roma ‘‘Tor Vergata’’, Via della Ricerca Scientifica n. 1, Roma
[2] Dipartimento di Matematica ‘‘E. De Giorgi’’ Università di Lecce, Via per Arnesano, Lecce
关键词
Contractible domains; Nonexistence of solutions; Supercritical dirichlet problems;
D O I
10.4171/RLM/882
中图分类号
学科分类号
摘要
We deal with nonlinear elliptic Dirichlet problems of the form divðjDujp-2DuÞ þ f ðuÞ ¼ 0 in W; u ¼ 0 on qW where W is a bounded domain in Rn, n b 2, p > 1 and f has supercritical growth from the viewpoint of Sobolev embedding. Our aim is to show that there exist bounded contractible non star-shaped domains W, arbitrarily close to domains with nontrivial topology, such that the problem does not have nontrivial solutions. For example, we prove that if n ¼ 2, 1 < p < 2, f ðuÞ ¼ jujq-2u with q > 22-pp and W ¼ fðr cos y; r sin yÞ: jyj < a; jr - 1j < sg with 0 < a < p and 0 < s < 1, then for all q > 22-pp there exists s > 0 such that the problem has only the trivial solution u C 0 for all a a ð0; pÞ and s a ð0; sÞ. © 2020 European Mathematical Society Publishing House. All rights reserved.
引用
收藏
页码:121 / 130
页数:9
相关论文
共 50 条