Recent advancements in integrating CO2 capture from flue gas and ambient air with thermal catalytic conversion for efficient CO2 utilization

被引:1
|
作者
Zhang, Ruoyu [1 ]
Xie, Zhenwei [2 ]
Ge, Qingfeng [3 ]
Zhu, Xinli [1 ]
机构
[1] Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn, Sch Chem Engn & Technol, Key Lab Green Chem Technol,Minist Educ, Tianjin 300072, Peoples R China
[2] China Kunlun Contracting & Engn Corp, Beijing 100037, Peoples R China
[3] Southern Illinois Univ, Dept Chem & Biochem, Carbondale, IL 62901 USA
基金
中国国家自然科学基金;
关键词
Integrated CO(2 )capture and conversion; Flue gas; Direct air capture; Dual-functional materials; Methanation; Reverse water gas shift reaction; Methanol formation; Dry reforming; DUAL-FUNCTION MATERIALS; CARBON-DIOXIDE CAPTURE; POWER-TO-METHANE; COPPER CATALYST; SELECTIVE CO2; HYDROGENATION; ADSORBENTS; SHIFT; NI; REDUCTION;
D O I
10.1016/j.jcou.2024.102973
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Capturing CO2 and converting it into valuable chemicals and fuels have been regarded as a pivotal strategy in addressing the environmental challenges of ever-growing CO2 emissions. Combining CO2 capture and conversion through material or process integration can eliminate the energy-intensive steps such as separation, compression, and transportation across a wide range of space and temperatures. The flue gas at high temperatures > 300 degrees C can be handled with dual-function materials consisting of sorbents and catalysts. The dual-function materials combine CO2 capture and conversion through material integration, converting CO2 with reactions such as methanation, reverse water-gas shift, dry reforming of CH4, and oxidative dehydrogenation of propane. On the other hand, capturing CO2 from air directly requires a long time to collect enough CO2 for the subsequent conversion reaction. Consequently, direct air capture will likely combine with the conversion reactions in stepwise operations. The low latent heat in CO2 from direct air capture makes it more suitable for reactions at a mild condition (< 250 degrees C), and stepwise operation allows the separate control of the capture and conversion conditions. Herein, we reviewed recent advancements in coupling CO2 capture from flue gas and ambient air with thermal catalytic conversion. We discussed the requirements for materials, reactor configuration, and process operation for capturing and converting CO2 from these sources and proposed that future research should focus on enhancing the efficiency, scalability, and sustainability of CO2 capture and conversion technologies and optimizing the process design.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Polyethylenimine-Impregnated Resin for High CO2 Adsorption: An Efficient Adsorbent for CO2 Capture from Simulated Flue Gas and Ambient Air
    Chen, Zhenhe
    Deng, Shubo
    Wei, Haoran
    Wang, Bin
    Huang, Jun
    Yu, Gang
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (15) : 6937 - 6945
  • [2] Integrated capture and solar-driven utilization of CO2 from flue gas and air
    Kar, Sayan
    Rahaman, Motiar
    Andrei, Virgil
    Bhattacharjee, Subhajit
    Roy, Souvik
    Reisner, Erwin
    JOULE, 2023, 7 (07) : 1496 - 1514
  • [3] CO2 Capture from Flue Gas with Monoethanolamine
    Cebrucean, Viorica
    Ionel, Ioana
    REVISTA DE CHIMIE, 2012, 63 (07): : 678 - 681
  • [4] Recent developments on polymeric membranes for CO2 capture from flue gas
    Han, Yang
    Ho, W. S. Winston
    JOURNAL OF POLYMER ENGINEERING, 2020, 40 (06) : 529 - 542
  • [5] Direct Capture of CO2 from Ambient Air
    Sanz-Perez, Eloy S.
    Murdock, Christopher R.
    Didas, Stephanie A.
    Jones, Christopher W.
    CHEMICAL REVIEWS, 2016, 116 (19) : 11840 - 11876
  • [6] ECONOMICAL CO2 CAPTURE FROM FOSSIL FLUE UTILIZATION
    David, Elena
    Stefanescu, I.
    Armeanu, A.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES C-ELECTRICAL ENGINEERING AND COMPUTER SCIENCE, 2010, 72 (01): : 135 - 144
  • [7] Enabling continuous capture and catalytic conversion of flue gas CO2 to syngas in one process
    Bobadilla, Luis F.
    Riesco-Garcia, Jose M.
    Penelas-Perez, German
    Urakawa, Atsushi
    JOURNAL OF CO2 UTILIZATION, 2016, 14 : 106 - 111
  • [8] Chitosan for separation and capture of CO2 from flue gas
    Levitskaia, Tatiana G.
    Casella, Amanda J.
    Peterson, James M.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 239
  • [9] Recent Progress in the Engineering of Polymeric Membranes for CO2 Capture from Flue Gas
    Han, Yang
    Yang, Yutong
    Ho, W. S. Winston
    MEMBRANES, 2020, 10 (11) : 1 - 35
  • [10] Recent Advances in CO2 Capture and Utilization
    Yu, Kai Man Kerry
    Curcic, Igor
    Gabriel, Joseph
    Tsang, Shik Chi Edman
    CHEMSUSCHEM, 2008, 1 (11) : 893 - 899