Construction and decoding of nonbinary quantum LDPC codes

被引:0
|
作者
Shao J.-H. [1 ]
Bai B.-M. [1 ]
Lin W. [1 ]
Zhou L. [1 ]
机构
[1] State Key Lab. of Integrated Service Networks, Xidian Univ.
关键词
BP algorithm; LDPC code; Quantum information; Quantum LDPC code;
D O I
10.3969/j.issn.1001-2400.1010.06.005
中图分类号
学科分类号
摘要
Nonbinary quantum codes are more suitable for error-correction in multi-level quantum systems. Based on stabilizer formalism over the finite field, a class of nonbinary quantum LDPC codes is presented in this paper. And the BP iterative decoding algorithm for these codes is described under the quantum depolarizing channel with the Monte Carlo simulation method. For example, a class of CSS structure 4-ary quantum LDPC codes is given with code rates 1/2 and 1/4. Compared with the present binary quantum LDPC codes of equivalent codelength, the channel threshold with 10-5FER is improved from 0.016 to 0.025.
引用
收藏
页码:1005 / 1010
页数:5
相关论文
共 14 条
  • [1] Shor P.W., Scheme for reducing decoherence in quantum computer memory, Phys Rev A, 52, 4, pp. 2493-2496, (1995)
  • [2] Li Z., Xing L., Wang X., Quantum constacyclic codes, Journal of Xidian University, 36, 1, pp. 48-51, (2009)
  • [3] Li Z., Xing L., Wang X., Encoding and decoding of a family of quantum stabilizer codes, Journal of Xidian University, 34, 2, pp. 187-189, (2007)
  • [4] Calderbank A.R., Shor P.W., Good quantum error-correcting codes exist, Phys Rev A, 54, 2, pp. 1098-1105, (1996)
  • [5] MacKay D., Good Eoor-correcting codes base on very sparse matrix, IEEE Trans on Information Theory, 45, 5, pp. 399-431, (1999)
  • [6] MacKay D., Mitchison G., McFadden P., Sparse-graph codes for quantum error correction, IEEE Trans on Information Theory, 50, 10, pp. 2315-2330, (2004)
  • [7] Aly S.A., A class of quantum LDPC codes constructed from finite geometries, IEEE Globecom, pp. 1097-2101, (2008)
  • [8] Tan P., Li J., New classes of LDPC stabilizer codes using ideas from matrix scrambling, IEEE International Conference on Communications, pp. 1166-1170, (2008)
  • [9] Leifer M., Poulin D., Quantum graphical models and belief propagation, Ann Phys, 323, 8, pp. 1899-1946, (2008)
  • [10] Poulin D., Chung Y., On the iterative decoding of sparse quantum codes, International Journal of Quantum Information and computation, 8, 10, pp. 987-995, (2008)