Directional discontinuities in the inner heliosphere from Parker Solar Probe and Solar Orbiter observations

被引:0
作者
Madar, A. [1 ,2 ]
Opitz, A. [1 ]
Erdos, G. [1 ]
Timar, A. [1 ]
Biro, N. [1 ,2 ]
Koban, G. [1 ,2 ]
Szabo, A. [3 ]
Nemeth, Z. [1 ]
机构
[1] Wigner Res Ctr Phys, Konkoly Thege M Rd 29-33,POB 49, H-1525 Budapest, Hungary
[2] Eotvos Lorand Univ, Doctoral Sch Phys, Egyet Ter 1-3, H-1053 Budapest, Hungary
[3] NASA, Heliophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
关键词
plasmas; turbulence; methods: data analysis; Sun: heliosphere; Sun: magnetic fields; solar wind; WIND; WAVES;
D O I
10.1051/0004-6361/202450684
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Directional discontinuities (DDs) are common structures in the solar wind plasma and are among the most important discontinuities besides shock waves. The Parker Solar Probe and Solar Orbiter spacecraft currently provide whole new insight into the inner heliosphere in spatial coverage and timescales. Aims. We search for DDs and classify them into subgroups of tangential (TD) and rotational (RD) discontinuities. The analysis of the DD thicknesses allows us to test different theories about their origin and evolution. Methods. We applied an automatic algorithm to select discontinuities between heliocentric distances of 0.06-1.01 AU. The method uses the spatial rotation of the magnetic field to identify the DDs and minimum variance analysis to determine the normal vector of the discontinuity surface. A classification into TDs and RDs was carried out using the magnetic field data and the Walen test in both the spacecraft and the deHoffmann-Teller frame. Results. With strict conditions, we found more than 140 000 DDs in the time intervals. We find that the spatial density of DDs decreases with increasing radial distance from the Sun in the innermost heliosphere. The comprehensive analysis revealed that most of the DD, for which the normal component of the magnetic field is small are in fact TDs, regardless of the jump in field magnitude. After the classification, we were able to determine the radial thickness evolution for the TDs and RDs separately. We found that the thickness of RDs decreases from 0.06 to 0.30 AU, and beyond this (0.30-1.01 AU) it increases with the local ion inertial length. This characteristic scaling is present for TDs throughout between 0.06 and 1.01 AU. Conclusions. Our results give us a simple classification tool for future studies of DDs, that is based only on magnetic field measurements. After we analyzed the DD thickness, we observationally confirmed that RDs are produced by Alfven-wave steepening, while the TDs are most likely the boundaries of flux tubes.
引用
收藏
页数:8
相关论文
共 36 条
  • [1] Kinetic Properties of Solar Wind Discontinuities at 1 AU Observed by ARTEMIS
    Artemyev, A., V
    Angelopoulos, V
    Vasko, I. Y.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2019, 124 (06) : 3858 - 3870
  • [2] The FIELDS Instrument Suite for Solar Probe Plus
    Bale, S. D.
    Goetz, K.
    Harvey, P. R.
    Turin, P.
    Bonnell, J. W.
    Dudok de Wit, T.
    Ergun, R. E.
    MacDowall, R. J.
    Pulupa, M.
    Andre, M.
    Bolton, M.
    Bougeret, J. -L.
    Bowen, T. A.
    Burgess, D.
    Cattell, C. A.
    Chandran, B. D. G.
    Chaston, C. C.
    Chen, C. H. K.
    Choi, M. K.
    Connerney, J. E.
    Cranmer, S.
    Diaz-Aguado, M.
    Donakowski, W.
    Drake, J. F.
    Farrell, W. M.
    Fergeau, P.
    Fermin, J.
    Fischer, J.
    Fox, N.
    Glaser, D.
    Goldstein, M.
    Gordon, D.
    Hanson, E.
    Harris, S. E.
    Hayes, L. M.
    Hinze, J. J.
    Hollweg, J. V.
    Horbury, T. S.
    Howard, R. A.
    Hoxie, V.
    Jannet, G.
    Karlsson, M.
    Kasper, J. C.
    Kellogg, P. J.
    Kien, M.
    Klimchuk, J. A.
    Krasnoselskikh, V. V.
    Krucker, S.
    Lynch, J. J.
    Maksimovic, M.
    [J]. SPACE SCIENCE REVIEWS, 2016, 204 (1-4) : 49 - 82
  • [3] Flux tube texture of the solar wind: Strands of the magnetic carpet at 1 AU?
    Borovsky, Joseph E.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2008, 113 (A8)
  • [4] The Solar Wind as a Turbulence Laboratory
    Bruno, Roberto
    Carbone, Vincenzo
    [J]. LIVING REVIEWS IN SOLAR PHYSICS, 2013, 10 (02) : 7 - +
  • [5] The Solar Probe Cup on the Parker Solar Probe
    Case, A. W.
    Kasper, Justin C.
    Stevens, Michael L.
    Korreck, Kelly E.
    Paulson, Kristoff
    Daigneau, Peter
    Caldwell, Dave
    Freeman, Mark
    Henry, Thayne
    Klingensmith, Brianna
    Bookbinder, J. A.
    Robinson, Miles
    Berg, Peter
    Tiu, Chris
    Wright, K. H., Jr.
    Reinhart, Matthew J.
    Curtis, David
    Ludlam, Michael
    Larson, Davin
    Whittlesey, Phyllis
    Livi, Roberto
    Klein, Kristopher G.
    Martinovic, Mihailo M.
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2020, 246 (02)
  • [6] NONLINEAR EVOLUTION OF PARALLEL-PROPAGATING HYDROMAGNETIC-WAVES
    COHEN, RH
    KULSRUD, RM
    [J]. PHYSICS OF FLUIDS, 1974, 17 (12) : 2215 - 2225
  • [7] Density of discontinuities in the heliosphere
    Erdos, G.
    Balogh, A.
    [J]. ADVANCES IN SPACE RESEARCH, 2008, 41 (02) : 287 - 296
  • [8] Decay of magnetic field irregularities observed by Ulysses
    Erdos, G
    Balogh, A
    Kóta, J
    [J]. SPACE SCIENCE REVIEWS, 2001, 97 (1-4) : 221 - 224
  • [9] The Solar Probe Plus Mission: Humanity's First Visit to Our Star
    Fox, N. J.
    Velli, M. C.
    Bale, S. D.
    Decker, R.
    Driesman, A.
    Howard, R. A.
    Kasper, J. C.
    Kinnison, J.
    Kusterer, M.
    Lario, D.
    Lockwood, M. K.
    McComas, D. J.
    Raouafi, N. E.
    Szabo, A.
    [J]. SPACE SCIENCE REVIEWS, 2016, 204 (1-4) : 7 - 48
  • [10] The Solar Orbiter magnetometer
    Horbury, T. S.
    O'Brien, H.
    Blazquez, I. Carrasco
    Bendyk, M.
    Brown, P.
    Hudson, R.
    Evans, V.
    Oddy, T. M.
    Carr, C. M.
    Beek, T. J.
    Cupido, E.
    Bhattacharya, S.
    Dominguez, J. -A.
    Matthews, L.
    Myklebust, V. R.
    Whiteside, B.
    Bale, S. D.
    Baumjohann, W.
    Burgess, D.
    Carbone, V.
    Cargill, P.
    Eastwood, J.
    Erdos, G.
    Fletcher, L.
    Forsyth, R.
    Giacalone, J.
    Glassmeier, K. -H.
    Goldstein, M. L.
    Hoeksema, T.
    Lockwood, M.
    Magnes, W.
    Maksimovic, M.
    Marsch, E.
    Matthaeus, W. H.
    Murphy, N.
    Nakariakov, V. M.
    Owen, C. J.
    Owens, M.
    Rodriguez-Pacheco, J.
    Richter, I.
    Riley, P.
    Russell, C. T.
    Schwartz, S.
    Vainio, R.
    Velli, M.
    Vennerstrom, S.
    Walsh, R.
    Wimmer-Schweingruber, R. F.
    Zank, G.
    Muller, D.
    [J]. ASTRONOMY & ASTROPHYSICS, 2020, 642