A posteriori error estimates of Darcy flows with Robin-type jump interface conditions

被引:0
|
作者
Lee, Jeonghun J. [1 ]
机构
[1] Baylor Univ, Dept Math, Waco, TX 76706 USA
基金
美国国家科学基金会;
关键词
Mixed finite element methods; A posteriori error estimates; Robin boundary conditions; MIXED FINITE-ELEMENTS; DISCONTINUOUS GALERKIN METHODS; EXTERIOR CALCULUS;
D O I
10.1016/j.camwa.2024.09.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we develop an a posteriori error estimator for mixed finite element methods of Darcy flow problems with Robin-type jump interface conditions. We construct an energy-norm type a posteriori error estimator using the Stenberg post-processing. The reliability of the estimator is proved using an interface-adapted Helmholtz- type decomposition and an interface-adapted Scott-Zhang type interpolation operator. A local efficiency and the reliability of post-processed pressure are also proved. Numerical results illustrating adaptivity algorithms using our estimator are included.
引用
收藏
页码:417 / 430
页数:14
相关论文
共 50 条
  • [1] Size estimates of unknown boundaries with a Robin-type condition
    Di Cristo, Michele
    Sincich, Eva
    Vessella, Sergio
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2017, 147 (04) : 727 - 741
  • [2] A posteriori error estimates for the Brinkman–Darcy–Forchheimer problem
    Toni Sayah
    Computational and Applied Mathematics, 2021, 40
  • [3] A posteriori error estimates, stopping criteria, and adaptivity for multiphase compositional Darcy flows in porous media
    Di Pietro, Daniele A.
    Flauraud, Eric
    Vohralik, Martin
    Yousef, Soleiman
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 276 : 163 - 187
  • [4] A posteriori error estimates for the Brinkman-Darcy-Forchheimer problem
    Sayah, Toni
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (07):
  • [5] A Posteriori Error Estimates for Darcy-Forchheimer's Problem
    Sayah, Toni
    Semaan, Georges
    Triki, Faouzi
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2023, 23 (02) : 517 - 544
  • [6] A posteriori error estimates for Darcy's problem coupled with the heat equation
    Dib, Serena
    Girault, Vivette
    Hecht, Frederic
    Sayah, Toni
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2019, 53 (06) : 2121 - 2159
  • [7] A posteriori error estimates for a Maxwell type problem
    Anjam, I.
    Mali, O.
    Muzalevsky, A.
    Neittaanmaki, R.
    Repin, S.
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2009, 24 (05) : 395 - 408
  • [8] Weber-Type Integral Transform Connected with Robin-Type Boundary Conditions
    Elnaqeeb, Thanaa
    Shah, Nehad Ali
    Vieru, Dumitru
    MATHEMATICS, 2020, 8 (08)
  • [9] Hierarchical basis a posteriori error estimates for compressible Stokes flows
    Kweon, JR
    APPLIED NUMERICAL MATHEMATICS, 2000, 32 (01) : 53 - 68
  • [10] A POSTERIORI ERROR-ESTIMATES FOR THE ADAPTATIVE COMPUTATION OF QUASINEWTONIAN FLOWS
    BARANGER, J
    ELAMRI, H
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1991, 25 (01): : 31 - 47