Online robust estimation of flux and load torque in induction motors

被引:0
|
作者
机构
[1] [1,Bahloul, Mohamed
[2] Chrifi-Alaoui, Larbi
[3] Vargas, Alessandro N.
[4] Chaabane, Mohamed
[5] Drid, Said
来源
Bahloul, Mohamed (eng.mohamed.bahloul@ieee.org) | 1600年 / Springer London卷 / 94期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a comparative study between two methods dedicated to the robust estimation of load torque and flux of induction motors (IM). The developed approaches rely on the adaptive Luenberger observer theory. The first method is based on the development of a Takagi-Sugeno Adaptive Luenberger Observer. In order to enhance the dynamic of the load torque estimation, a second method is presented using a Takagi-Sugeno Fast Adaptive Luenberger Observer approach. Sufficient conditions are presented to ensure the asymptotic convergence of the flux and the load torque estimation errors. Moreover, robustness performances are considered in order to minimize the impact of the rotor resistance variations on the quality of the estimation. Experiments were carried out to illustrate the effectiveness and the robustness of the proposed results and to show the advantages and limitations of each method. © 2017, Springer-Verlag London Ltd.
引用
收藏
页码:5 / 8
相关论文
共 50 条
  • [1] Online robust estimation of flux and load torque in induction motors
    Bahloul, Mohamed
    Chrifi-Alaoui, Larbi
    Vargas, Alessandro N.
    Chaabane, Mohamed
    Drid, Said
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2018, 94 (5-8): : 2703 - 2713
  • [2] Online robust estimation of flux and load torque in induction motors
    Mohamed Bahloul
    Larbi Chrifi-Alaoui
    Alessandro N. Vargas
    Mohamed Chaabane
    Said Drid
    The International Journal of Advanced Manufacturing Technology, 2018, 94 : 2703 - 2713
  • [3] Robust Flux and Load Torque Estimation in Induction Machine
    Bahloul, M.
    Chrifi-Alaoui, L.
    Souissi, M.
    Drid, S.
    Chaabane, M.
    2015 EUROPEAN CONTROL CONFERENCE (ECC), 2015, : 666 - 671
  • [4] NONLINEAR OBSERVER DESIGN FOR LOAD TORQUE ESTIMATION OF INDUCTION MOTORS
    Vu, Giang Hoang
    Yahoui, Hamed
    Hammouri, Hassan
    ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2020, 18 (03) : 153 - 159
  • [5] Torque and flux tracking of induction motors
    EspinosaPerez, G
    Ortega, R
    Nicklasson, PJ
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 1997, 7 (01) : 1 - 9
  • [6] Load torque estimation in induction motors using artificial neural networks
    Goedtel, A
    da Silva, IN
    Serni, PJA
    Avolio, E
    PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 1379 - 1384
  • [7] Accurate Torque Estimation for Induction Motors by Utilizing Globally Optimized Flux Observers
    Stender, Marius
    Wallscheid, Oliver
    Bocker, Joachim
    2020 INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS, ELECTRICAL DRIVES, AUTOMATION AND MOTION (SPEEDAM 2020), 2020, : 219 - 226
  • [8] Torque Estimation for Synchronous Reluctance Motors Using Robust Flux Observer to Magnetic Saturation
    Shinke, Atsushi
    Hasegawa, Masaru
    Matsui, Keiju
    ISIE: 2009 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, 2009, : 1552 - 1557
  • [9] A Noninvasive External Flux Based Method for In-Service Induction Motors Torque Estimation
    Younsi, Mohamed Omar
    Lecointe, Jean-Philippe
    Ninet, Olivier
    Morganti, Fabrice
    Brudny, Jean-Francois
    Zidat, Farid
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2019, 34 (02) : 782 - 788
  • [10] Stator-Flux-Linkage-Calculation-Based Torque Estimation of Induction Motors Considering Iron, Mechanical, and Stray Load Losses
    Yamamoto, Shu
    Hirahara, Hideaki
    Gunasekara, Balapuwaduge Amith Shantha
    Motosugi, Masayuki
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2021, 57 (06) : 5916 - 5926