Mathematical model of recieved signal for airborne oceanological lidars

被引:0
|
作者
Nie, Ruijie [1 ,2 ]
Zhang, Qiheng [1 ]
Xu, Zhiyong [1 ]
Wang, Huachuang [1 ]
机构
[1] Institute of Optics and Electronics, Chinese Academic of Sciences, Chengdu, Sichuan 610209, China
[2] University of Chinese Academy of Sciences, Beijing 100049, China
来源
Guangxue Xuebao/Acta Optica Sinica | 2013年 / 33卷 / SUPPL.1期
关键词
Oceanography - Transfer functions - Bathymetry - Water quality - Analytical models - Multiple scattering;
D O I
10.3788/AOS201333.s128002
中图分类号
学科分类号
摘要
Airborne oceanological lidars are usually applied in bathymetry of near-shore ocean water and reconstructing the optical characteristics of ocean water medium. New applications request much more accuracy in oceanological topography and ocean water quality reconnaissance, and need more accurate analytic model of lidar return signals for bathymetry and reconstructing the water quality parameters. Fourier transform method is used to construct the analytic model of bottom return signals and water backscattering signals for monostatic lidar based on analytic beam spread function and ocean medium transfer function given by Mclean, et al., and in this analytic model, the multiple scattering and pulse stretching are considered and discussed, and the calculating method of downwelling irradiance attenuation coefficient and lidar attenuation coefficient is given, and the results indicate that the pulse stretching time can reach tens of nanoseconds in turbid harbor water. The analysis can offer some references for depth and water quality parameter reconstruction algorithms in theorizing.
引用
收藏
相关论文
共 50 条
  • [1] Mathematical modeling of the input signals of oceanological lidars
    Kopilevich, Yu. I.
    Surkov, A. G.
    JOURNAL OF OPTICAL TECHNOLOGY, 2008, 75 (05) : 321 - 326
  • [2] Oceanological Monitoring of Fishing Areas using Lidars
    Chernook, V. I.
    Vasilyev, A. N.
    Goldin, Yu A.
    Gureev, B. A.
    Goryainov, V. S.
    Buznikov, A. A.
    2014 INTERNATIONAL CONFERENCE LASER OPTICS, 2014,
  • [3] Mathematical Model of Airborne Stabilization System
    Sushchenko, O.
    2022 IEEE 17TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCES AND INFORMATION TECHNOLOGIES (CSIT), 2022, : 327 - 331
  • [4] SUMMARY OF THE SPECIALTY MEETING ON AIRBORNE RADARS AND LIDARS
    CHALON, JP
    JOHNSON, WB
    BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 1993, 74 (10) : 1909 - 1914
  • [5] Mathematical model of airborne InSAR block adjustment
    Yue, Xijuan
    Han, Chunming
    Dou, Changyong
    Zhao, Yinghui
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2015, 40 (01): : 59 - 63
  • [6] A mathematical model for predicting the viability of airborne viruses
    Posada, J. A.
    Redrow, J.
    Celik, I.
    JOURNAL OF VIROLOGICAL METHODS, 2010, 164 (1-2) : 88 - 95
  • [7] Detection and Analysis of Water Vapor Transport by Airborne Lidars
    Kiemle, Christoph
    Schaefler, Andreas
    Wirth, Martin
    Fix, Andreas
    Rahm, Stephan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (03) : 1189 - 1193
  • [8] USING AIRBORNE & SPACE LiDARS FOR LARGE-AREA INVENTORY
    Nelson, R.
    Stahl, G.
    Holm, S.
    Gregoire, T.
    Naesset, E.
    Gobakken, T.
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 2463 - 2466
  • [9] A Mathematical Model for the Evaluation of Airborne Infection Risk for Bus Passengers
    Sooknum, Jenjira
    Pochai, Nopparat
    IAENG International Journal of Computer Science, 2023, 50 (01)
  • [10] MATHEMATICAL MODEL OF SIGNAL PROPAGATION IN EXCITABLE MEDIA
    Kantner, Jakub
    Benes, Michal
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (03): : 935 - 951