In-situ growth of TiO2 imbedded Ti3C2TA nanosheets to construct PCN/Ti3C2TA MXenes 2D/3D heterojunction for efficient solar driven photocatalytic CO2 reduction towards CO and CH4 production

被引:0
|
作者
Tahir, Muhammad [1 ]
Tahir, Beenish [1 ]
机构
[1] Chemical Reaction Engineering Group (GREG), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru,Johor, Malaysia
关键词
Nanosheets - Reducing agents - Greenhouse effect - Heterojunctions - Solar energy - Carbon dioxide - Etching - Artificial photosynthesis - Photocatalytic activity;
D O I
暂无
中图分类号
学科分类号
摘要
Constructing efficient structured materials for artificial photosynthesis of CO2 is a promising strategy to produce renewable fuels in addition of mitigating greenhouse effect. In this work, 2D porous g-C3N4 (PCN) coupled exfoliated 3D Ti3C2TA MXene (TiC) nanosheets with TiO2 NPs in-situ growth was constructed in a single step through HF treatment approach. The different exfoliated TiC structures were successfully synthesized for adjusting HF etching time (24 h, 48 h and 96 h). With growing etchant time from 24 to 96 h, the amount of TiO2 produced was increased, but it has adverse effects on CO and CH4 production rate. The maximum production rates for CO and CH4 of 317.4 and 78.55 µmol g−1 h−1 were attained when the 10TiC-48/PCN was employed than using TiC-24/PCN, TiC-96/PCN and PCN composite samples, respectively. The performance of 10TiC-48/PCN composite for CO and CH4 evolution were 9.9 and 6.7 folds higher than using pristine PCN sample, respectively. The possible mechanism is assigned to porous structure with intimate contact enabling efficient charge carrier separation with the role of TiO2 NPs to work as a bridge to transport electrons towards MXene surface. Among the reducing agents, water was favorable for CO evolution, whereas, methanol–water system promoted CH4 production. All these findings confirm that heterojunction formation facilitates charges separation and can be further used in solar energy relating application. © 2021 Elsevier Inc.
引用
收藏
页码:20 / 37
相关论文
共 50 条
  • [1] In-situ growth of TiO2 imbedded Ti3C2TA nanosheets to construct PCN/Ti3C2TA MXenes 2D/3D heterojunction for efficient solar driven photocatalytic CO2 reduction towards CO and CH4 production
    Tahir, Muhammad
    Tahir, Beenish
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 591 : 20 - 37
  • [2] A 3D Hierarchical Ti3C2Tx/TiO2 Heterojunction for Enhanced Photocatalytic CO2 Reduction
    Song, Qinjun
    Shen, Baojia
    Yu, Jiaguo
    Cao, Shaowen
    CHEMNANOMAT, 2021, 7 (08) : 910 - 915
  • [3] 2D/2D Schottky heterojunction of in-situ growth FAPbBr3/Ti3C2 composites for enhancing photocatalytic CO2 reduction
    Que, Meidan
    Cai, Weihua
    Zhao, Yang
    Yang, Yawei
    Zhang, Boyue
    Yun, Sining
    Chen, Jin
    Zhu, Gangqiang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 610 : 538 - 545
  • [4] Well-designed 2D/2D Ti3C2TA/R MXene coupled g-C3N4 heterojunction with in-situ growth of anatase/rutile TiO2 nucleates to boost photocatalytic dry-reforming of methane (DRM) for syngas production under visible light
    Khan, Azmat Ali
    Tahir, Muhammad
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 285
  • [5] The enhancement of photocatalytic CO2 reduction by the in situ growth of TiO2 on Ti3C2 MXene
    Chen, Liuyun
    Huang, Kelin
    Xie, Qingruo
    Lam, Sze Mun
    Sin, Jin Chung
    Su, Tongming
    Ji, Hongbing
    Qin, Zuzeng
    CATALYSIS SCIENCE & TECHNOLOGY, 2021, 11 (04) : 1602 - 1614
  • [6] 2D/2D Ti3C2 MXene/g-C3N4 nanosheets heterojunction for high efficient CO2 reduction photocatalyst: Dual effects of urea
    Yang, Chao
    Tan, Qiuyan
    Li, Qin
    Zhou, Jie
    Fan, Jiajie
    Li, Bing
    Sun, Jie
    Lv, Kangle
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 268
  • [7] Electrocatalytic CO2 reduction on earth abundant 2D Mo2C and Ti3C2 MXenes
    Attanayake, Nuwan H.
    Banjade, Huta R.
    Thenuwara, Akila C.
    Anasori, Babak
    Yan, Qimin
    Strongin, Daniel R.
    CHEMICAL COMMUNICATIONS, 2021, 57 (13) : 1675 - 1678
  • [8] An in situ spectroscopic study of 2D CuS/Ti3C2 photocatalytic CO2 reduction to C1 and C2
    Li, Wanhe
    Chen, Yahui
    Jia, Shuhan
    Zhou, Yiying
    Hua, Yiting
    Lin, Xinyu
    Zhu, Zhi
    NEW JOURNAL OF CHEMISTRY, 2024, 48 (28) : 12575 - 12583
  • [9] 2D/2D heterojunction of Ti3C2/g-C3N4 nanosheets for enhanced photocatalytic hydrogen evolution
    Su, Tongming
    Hood, Zachary D.
    Naguib, Michael
    Bai, Lei
    Luo, Si
    Rouleau, Christopher M.
    Ivanov, Ilia N.
    Ji, Hongbing
    Qin, Zuzeng
    Wu, Zili
    NANOSCALE, 2019, 11 (17) : 8138 - 8149
  • [10] Mesoporous g-C3N4 /MXene (Ti3C2Tx) heterojunction as a 2D electronic charge transfer for efficient photocatalytic CO2 reduction
    Li, Xing
    Bai, Yang
    Shi, Xian
    Huang, Jinde
    Zhang, Kai
    Wang, Ren
    Ye, Liqun
    APPLIED SURFACE SCIENCE, 2021, 546