Metal-organic chemical vapor deposition of anatase titania on multiwalled carbon nanotubes for electrochemical capacitors

被引:0
|
作者
Mombeshora, Edwin T. [1 ]
Muchuweni, Edigar [1 ]
Davies, Matthew L. [1 ,2 ]
Nyamori, Vincent O. [1 ]
Martincigh, Bice S. [1 ]
机构
[1] School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
[2] SPECIFIC IKC, Materials Science and Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
来源
Energy Science and Engineering | 2022年 / 10卷 / 09期
基金
英国工程与自然科学研究理事会; 新加坡国家研究基金会; “创新英国”项目;
关键词
Capacitance - Carbon carbon composites - Electric discharges - Electrochemical electrodes - Industrial chemicals - Metallorganic chemical vapor deposition - Multiwalled carbon nanotubes (MWCN) - Organic chemicals - Organometallics - Porous materials - Storage (materials) - Titanium dioxide;
D O I
暂无
中图分类号
学科分类号
摘要
In practice, the capacitance from the electrochemical double layer formation on porous carbon-based electrodes is still below preferred values, limiting their use in electrochemical capacitors. The current drive is to innovate ways that generate additional capacitance in the electrochemical double layer capacitive nature of carbon nanomaterials towards both a high specific energy density (Es) and power density (Ps). Herein we report the use of metal-organic chemical vapor deposition (MOCVD) to coat multiwalled carbon nanotubes (MWCNTs) with anatase titanium dioxide (TiO2) to induce pseudocapacitive charge storage characteristics on a carbon-based electrode. The study shows that MWCNTs were coated in bundles, and targeted TiO2 loadings were successfully attained, though the TiO2 agglomerates also increased with TiO2 wt.%. The 10 wt.% TiO2 TiO2-MWCNT material displayed the best capacitive behavior with associated specific discharge capacitance (Cd), Es, and Ps values of 907 F kg−1, 55.56 Wh kg−1, and 2.78 W kg−1 at 0.1 A g−1, respectively, due to the synergistic effect of the two components of the composite. Additionally, the integral capacitance (Cs) of the 20 wt.% TiO2 material was enhanced more than 5000-fold relative to that of the 5 wt.% TiO2 TiO2-MWCNT composite at higher scan speeds of 100 and 200 mV s−1. Electrochemical measurements further demonstrated the possible positive tuning of capacitive characteristics (charge/discharge rates, Cd and Cs) with TiO2 wt.% control. The MOCVD synthesis method imparted the TiO2-MWCNT composites with suitable traits that showed high potential in improving physicochemical processes favorable in electrical energy storage. © 2022 The Authors. Energy Science & Engineering published by the Society of Chemical Industry and John Wiley & Sons Ltd.
引用
收藏
页码:3493 / 3506
相关论文
共 50 条
  • [1] Metal-organic chemical vapor deposition of anatase titania on multiwalled carbon nanotubes for electrochemical capacitors
    Mombeshora, Edwin T.
    Muchuweni, Edigar
    Davies, Matthew L.
    Nyamori, Vincent O.
    Martincigh, Bice S.
    ENERGY SCIENCE & ENGINEERING, 2022, 10 (09) : 3493 - 3506
  • [2] Multiwalled carbon nanotubes by chemical vapor deposition using multilayered metal catalysts
    Delzeit, L
    Nguyen, CV
    Chen, B
    Stevens, R
    Cassell, A
    Han, J
    Meyyappan, M
    JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (22): : 5629 - 5635
  • [3] Formation of Multiwall Carbon Nanotubes on Cylindrical Substrates in Synthesis by Metal-Organic Chemical Vapor Deposition
    Klimov, E. S.
    Buzaeva, M. V.
    Makarova, I. A.
    Davydova, O. A.
    D'yachkova, T. Yu.
    Isaev, A. V.
    Vaganova, E. S.
    Fomin, A. N.
    Svetukhin, V. V.
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2018, 91 (02) : 202 - 206
  • [4] Formation of Multiwall Carbon Nanotubes on Cylindrical Substrates in Synthesis by Metal-Organic Chemical Vapor Deposition
    E. S. Klimov
    M. V. Buzaeva
    I. A. Makarova
    O. A. Davydova
    T. Yu. D’yachkova
    A. V. Isaev
    E. S. Vaganova
    A. N. Fomin
    V. V. Svetukhin
    Russian Journal of Applied Chemistry, 2018, 91 : 202 - 206
  • [5] Structure of Multiwalled Carbon Nanotubes Grown by Chemical Vapor Deposition
    Baitinger, E. M.
    Vekesser, N. A.
    Kovalev, I. N.
    Sinitsyn, A. A.
    Tsygankov, I. A.
    Ryabkov, Yu. I.
    Viktorov, V. V.
    INORGANIC MATERIALS, 2011, 47 (03) : 251 - 254
  • [6] Structure of multiwalled carbon nanotubes grown by chemical vapor deposition
    E. M. Baitinger
    N. A. Vekesser
    I. N. Kovalev
    A. A. Sinitsyn
    I. A. Tsygankov
    Yu. I. Ryabkov
    V. V. Viktorov
    Inorganic Materials, 2011, 47 : 251 - 254
  • [7] Mass production of multiwalled carbon nanotubes by chemical vapor deposition
    Magrez, A
    Mikó, C
    Seo, JW
    Gaál, R
    Forró, L
    ELECTRONIC PROPERTIES OF SYNTHETIC NANOSTRUCTURES, 2004, 723 : 61 - 64
  • [8] Metal-organic chemical vapor deposition of ZnO
    Pan, M
    Fenwick, WE
    Strassburg, M
    Li, N
    Kang, H
    Kane, MH
    Asghar, A
    Gupta, S
    Varatharajan, R
    Nause, J
    El-Zein, N
    Fabiano, P
    Steiner, T
    Ferguson, I
    JOURNAL OF CRYSTAL GROWTH, 2006, 287 (02) : 688 - 693
  • [9] Metal-organic precursors and chemical vapor deposition
    Valade, L
    Teyssandier, F
    ACTUALITE CHIMIQUE, 1999, (02): : 14 - 21
  • [10] Chemical Vapor Deposition of Silicon Nanoparticles on the Surface of Multiwalled Carbon Nanotubes
    Zavorin, A. V.
    Kuznetsov, V. L.
    Moseenkov, S. I.
    Tsendsuren, Tsog-Ochir
    Volodin, V. A.
    Galkin, P. S.
    Ishchenko, A. V.
    JOURNAL OF STRUCTURAL CHEMISTRY, 2020, 61 (04) : 617 - 627