Elastic 3D-Printed Nanofibers Composite Scaffold for Bone Tissue Engineering

被引:0
|
作者
Cai P. [1 ]
Li C. [2 ]
Ding Y. [1 ]
Lu H. [1 ]
Yu X. [1 ]
Cui J. [1 ]
Yu F. [1 ]
Wang H. [1 ]
Wu J. [1 ]
EL-Newehy M. [3 ]
Abdulhameed M.M. [3 ]
Song L. [2 ]
Mo X. [1 ]
Sun B. [1 ]
机构
[1] Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine & College of Biological Science and Medical Engineering, Donghua University, Shanghai
[2] Department of Stomatology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai
[3] Department of Chemistry, College of Science, King Saud University, Riyadh
来源
ACS Applied Materials and Interfaces | 2023年 / 15卷 / 47期
关键词
3D printing; bone regeneration; nanofibers; scaffold; tissue engineering;
D O I
10.1021/ACSAMI.3C12426
中图分类号
学科分类号
摘要
Loading nanoparticles into hydrogels has been a conventional approach to augment the printability of ink and the physicochemical characteristics of scaffolds in three-dimensional (3D) printing. However, the efficacy of this enhancement has often proven to be limited. We amalgamate electrospun nanofibers with 3D printing techniques to fabricate a composite scaffold reminiscent of a “reinforced concrete” structure, aimed at addressing bone defects. These supple silica nanofibers are synthesized through a dual-step process involving high-speed homogenization and low-temperature ball milling technology. The nanofibers are homogeneously blended with sodium alginate to create the printing ink. The resultant ink was extruded seamlessly, displaying commendable molding properties, thereby yielding scaffolds with favorable macroscopic morphology. In contrast to nanoparticle-reinforced scaffolds, composite scaffolds containing nanofibers exhibit superior mechanical attributes and bioactivity. These nanofiber composite scaffolds demonstrate enhanced osteoinductive properties in both in vitro and in vivo evaluations. To conclude, this research introduces a novel 3D printing approach where the fabricated nanofiber-infused 3D-printed scaffolds hold the potential to revolutionize the realm of 3D printing in the domain of bone tissue engineering. © 2023 American Chemical Society.
引用
收藏
页码:54280 / 54293
页数:13
相关论文
共 50 条
  • [1] Elastic 3D-Printed Nanofibers Composite Scaffold for Bone Tissue Engineering
    Cai, Pengfei
    Li, Chunchun
    Ding, Yangfan
    Lu, Hanting
    Yu, Xiao
    Cui, Jie
    Yu, Fan
    Wang, Hongsheng
    Wu, Jinglei
    EL-Newehy, Mohamed
    Abdulhameed, Meera Moydeen
    Song, Liang
    Mo, Xiumei
    Sun, Binbin
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (47) : 54280 - 54293
  • [2] A hybrid 3D-printed aspirin-laden liposome composite scaffold for bone tissue engineering
    Li Y.
    Bai Y.
    Pan J.
    Wang H.
    Li H.
    Xu X.
    Fu X.
    Shi R.
    Luo Z.
    Li Y.
    Li Q.
    Fuh J.Y.H.
    Wei S.
    J. Mater. Chem. B, 2019, 4 (619-629): : 619 - 629
  • [3] A hybrid 3D-printed aspirin-laden liposome composite scaffold for bone tissue engineering
    Li, Yan
    Bai, Yanjie
    Pan, Jijia
    Wang, Hui
    Li, Hongming
    Xu, Xiao
    Fu, Xiaoming
    Shi, Rui
    Luo, Zuyuan
    Li, Yongliang
    Li, Qian
    Fuh, Jerry Y. H.
    Wei, Shicheng
    JOURNAL OF MATERIALS CHEMISTRY B, 2019, 7 (04) : 619 - 629
  • [4] A 3D-printed Sn-doped calcium phosphate scaffold for bone tissue engineering
    Liang, Hong
    Fu, Gaosheng
    Liu, Jinrui
    Tang, Yueting
    Wang, Yujue
    Chen, Shan
    Zhang, Yanjie
    Zhang, Chen
    FRONTIERS IN MATERIALS, 2022, 9
  • [5] The Design of 3D-Printed Polylactic Acid-Bioglass Composite Scaffold: A Potential Implant Material for Bone Tissue Engineering
    Sultan, Sahar
    Thomas, Nebu
    Varghese, Mekha
    Dalvi, Yogesh
    Joy, Shilpa
    Hall, Stephen
    Mathew, Aji P.
    MOLECULES, 2022, 27 (21):
  • [6] Surface modification of 3D-printed polylactic acid-hardystonite scaffold for bone tissue engineering
    Shirali, Danial
    Emadi, Rahmatollah
    Khodaei, Mohammad
    Emadi, Hosein
    Abadi, Mostafa Arab Eshagh
    Tayebi, Lobat
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2025, 308
  • [7] 3D-printed bioactive Chitosan/Alginate/Hardystonite scaffold for bone tissue engineering: Synthesis and characterization
    Mohandesnezhad, Sanam
    Monfared, Mahdieh Hajian
    Samani, Saeed
    Farzin, Ali
    Poursamar, S. Ali
    Ai, Jafar
    Ebrahimi-Barough, Somayeh
    Azami, Mahmoud
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2023, 609
  • [8] Fabrication and Application of a 3D-Printed Poly-ε-Caprolactone Cage Scaffold for Bone Tissue Engineering
    Wang, Siyi
    Li, Rong
    Xu, Yongxiang
    Xia, Dandan
    Zhu, Yuan
    Yoon, Jungmin
    Gu, Ranli
    Liu, Xuenan
    Zhao, Wenyan
    Zhao, Xubin
    Liu, Yunsong
    Sun, Yuchun
    Zhou, Yongsheng
    BIOMED RESEARCH INTERNATIONAL, 2020, 2020
  • [9] Biocompatibility of Developing 3D-Printed Tubular Scaffold Coated with Nanofibers for Bone Applications
    Carolina Vazquez-Vazquez, Febe
    Alejandro Chanes-Cuevas, Osmar
    Masuoka, David
    Arenas Alatorre, Jesus
    Chavarria-Bolanos, Daniel
    Roberto Vega-Baudrit, Jose
    Serrano-Bello, Janeth
    Antonio Alvarez-Perez, Marco
    JOURNAL OF NANOMATERIALS, 2019, 2019
  • [10] 3D-Printed PCL/SrHA@DFO Bone Tissue Engineering Scaffold with Bone Regeneration and Vascularization Function
    Chen, Kai
    Luo, Liu
    Tao, Ruolan
    Li, Muzi
    Qu, Shuqi
    Wu, Xiaofang
    Zhang, Xinyue
    Feng, Haiyan
    Zhu, Ziqiang
    Zhang, Dekun
    ACS APPLIED BIO MATERIALS, 2025, 8 (02): : 1684 - 1698