共 10 条
- [1] Yang W., Fortunati E., Dominici F., Et al., Effect of processing conditions and lignin content on thermal, mechanical and degradative behavior of lignin nanoparticles/polylactic (acid) bionanocomposites prepared by melt extrusion and solvent casting, Eur. Polym. J., 71, pp. 126-139, (2015)
- [2] Herrera N., Salaberria A.M., Mathew A.P., Et al., Plasticized polylactic acid nanocomposite films with cellulose and chitin nanocrystals prepared using extrusion and compression molding with two cooling rates: Effects on mechanical, thermal and optical properties, Composites Part A, 83, pp. 89-97, (2016)
- [3] Cailloux J., Hakim R.N., Santana O.O., Et al., Reactive extrusion: A useful process to manufacture structurally modified PLA/o-MMT composites, Composites Part A, 88, pp. 106-115, (2016)
- [4] Dhar P., Tarafder D., Kumar A., Et al., Thermally recyclable polylactic acid/cellulose nanocrystal films through reactive extrusion process, Polymer, 87, pp. 268-282, (2016)
- [5] Guerra A.J., San J., Ciurana J., Fabrication of PCL/PLA composite tube for stent manufacturing, Proced. Crip, 65, pp. 231-235, (2017)
- [6] Guerra A., Ciurana J.D., Fibre laser cutting of polymer tubes for stents manufacturing, Proced. Manuf., 13, pp. 190-196, (2017)
- [7] Grabow N., Bunger C.M., Schultze C., Et al., A biodegradable slotted tube stent based on poly(L-lactide) and poly(4-hydroxybutyrate) for rapid balloon-expansion, Ann. Biomed. Eng., 35, pp. 2031-2038, (2007)
- [8] Arbeiter D., Schumann K., Sahmel O., Et al., The effect of thermal treatment on the mechanical properties of PLLA tubular specimens, Curr. Directions Biomed. Eng., 2, pp. 27-29, (2016)
- [9] Zheng Q.L., Ge D.W., Chen Y.W., Et al., Variation of tube diameter and wall thickness in medical micro-diameter tube extrusion, Plastics, 41, 2, pp. 24-27, (2012)
- [10] Shao Y.K., Xie S.G., Theoretical research on the extruding-drawing production of plastic tubes, China Synthetic Resin and Plastics, 4, pp. 41-44, (1994)