Viability for Coupled SDEs Driven by Fractional Brownian Motion

被引:0
|
作者
Li, Zhi [1 ]
Xu, Liping [1 ]
Zhou, Jie [2 ]
机构
[1] School of Information and Mathematics, Yangtze University, Jingzhou,Hubei,434023, China
[2] College of Computer Science and Software Engineering, Shenzhen University, Shenzhen,Guangdong,518060, China
来源
关键词
Stochastic systems;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:55 / 98
相关论文
共 50 条
  • [1] Viability for Coupled SDEs Driven by Fractional Brownian Motion
    Li, Zhi
    Xu, Liping
    Zhou, Jie
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (SUPPL 1): : S55 - S98
  • [2] Viability for Coupled SDEs Driven by Fractional Brownian Motion
    Zhi Li
    Liping Xu
    Jie Zhou
    Applied Mathematics & Optimization, 2021, 84 : 55 - 98
  • [3] Ergodicity of hypoelliptic SDEs driven by fractional Brownian motion
    Hairer, M.
    Pillai, N. S.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2011, 47 (02): : 601 - 628
  • [4] Distribution dependent SDEs driven by additive fractional Brownian motion
    Lucio Galeati
    Fabian A. Harang
    Avi Mayorcas
    Probability Theory and Related Fields, 2023, 185 : 251 - 309
  • [5] Distribution dependent SDEs driven by additive fractional Brownian motion
    Galeati, Lucio
    Harang, Fabian A.
    Mayorcas, Avi
    PROBABILITY THEORY AND RELATED FIELDS, 2023, 185 (1-2) : 251 - 309
  • [6] Harnack inequalities for SDEs driven by subordinator fractional Brownian motion
    Li, Zhi
    Yan, Litan
    STATISTICS & PROBABILITY LETTERS, 2018, 134 : 45 - 53
  • [7] HARNACK INEQUALITIES FOR FUNCTIONAL SDES DRIVEN BY SUBORDINATE FRACTIONAL BROWNIAN MOTION
    LI, Z. H. I.
    Peng, Y. A. R. O. N. G.
    Yan, L. I. T. A. N.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (04): : 1429 - 1453
  • [8] Harnack inequalities and applications for functional SDEs driven by fractional Brownian motion
    Li, Zhi
    Luo, Jiaowan
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2014, 22 (04) : 213 - 226
  • [9] Viability for differential equations driven by fractional Brownian motion
    Ciotir, Ioana
    Rascanu, Aurel
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (05) : 1505 - 1528
  • [10] On the absolute continuity of one-dimensional SDEs driven by a fractional Brownian motion
    Nourdin, I
    Simon, T
    STATISTICS & PROBABILITY LETTERS, 2006, 76 (09) : 907 - 912