Beam deflection correction model of wedge-shaped shock waves over hypersonic vehicles; [高超声速飞行器楔面激波的光线偏折校正模型]

被引:0
|
作者
Chen B. [1 ]
Zheng Y. [1 ]
Xu B. [1 ]
Zhang H. [1 ,2 ]
Chen Z. [1 ]
机构
[1] Information Engineering University, Zhengzhou
[2] Department of Civil Engineering, Luoyang Institute of Science and Technology, Luoyang
关键词
Beam deflection; Celestial attitude determination; Correction model; Error propagation; Hypersonic vehicles; Wedge-shaped shock waves;
D O I
10.3788/IRLA20210182
中图分类号
学科分类号
摘要
Celestial attitude determination is one of the important technical means for high precision autonomous navigation of aircraft. Shock waves are generated along the surfaces of hypersonic vehicles, which cause beam deflection, affect the observation of star trackers and celestial navigation performances of these vehicles. Most modern hypersonic vehicles adopt the wave-rider design, and the payload bay can be simplified into a wedge plane structure. The shock waves over hypersonic vehicles with wedge-shaped upper surfaces were analyzed. Based on aero-optical theories an analytical calculation method of the structure parameters of the wedge shock wave and a quantitative calculation model of the impact of the shock wave on the deflection of light were given. A correction model was proposed to control the deflection of beam by using the analytical calculation results. The propagation of shock angle measurement error in this model was discussed, and it was proved that the shock angle measurement error was negatively linear correlated with the correction effect deviation caused by it. The simulation results show that under the condition of altitude 20 km and Mach number 5-8, a stable shock wave structure is formed above the wedge surface, and the deflection of incident beam can be up to 6.8 arcseconds. The error between the shock angle parameters obtained by the analytical calculation method and the test results is within 0.1 arcseconds. This means that the error of beam deflection correction by using this model can be controlled at the order of the shock angle measurement error, and the observation accuracy can be significantly improved. Copyright ©2021 Infrared and Laser Engineering. All rights reserved.
引用
收藏
相关论文
共 3 条
  • [1] 高超声速飞行器楔面激波的光线偏折校正模型(英文)
    陈冰
    郑勇
    徐彬
    章后甜
    陈张雷
    红外与激光工程, 2021, (12) : 347 - 356
  • [2] Dynamic decoupling tracking control for the polytopic LPV model of hypersonic vehicle基于高超声速飞行器多胞 LPV 模型的动态解耦跟踪控制
    XueJing Lan
    YongJi Wang
    Lei Liu
    Science China Information Sciences, 2015, 58 : 1 - 14
  • [3] Normal gravity model for inertial navigation of a hypersonic boost-glide vehicle题目:用于高超声速助推滑翔飞行器惯性导航的正常重力模型
    Kai Chen
    Cheng-zhi Zeng
    Sen-sen Pei
    Wen-chao Liang
    Journal of Zhejiang University-SCIENCE A, 2022, 23 : 55 - 67