This study estimates global PM2.5 and anthropogenic and biogenic Secondary Organic Aerosols (a-SOA and b-SOA) and sources contributing to their formation. The global landscape was divided into eleven domains (North America (NAM); South America (SAM); Europe (EUR); North Africa and Middle East (NAF); Equatorial Africa (EAF); South of Africa (SAF); Russia and Central Asia (RUS); Eastern Asia (EAS); South Asia (SAS); Southeast Asia (SEA) and Australia (AUS)) and 46 cities based on varying populations. Three inventories for global emissions were considered: Community Emissions Data System, Model of Emission of Gases and Aerosol, and Global Fire Emissions Database. WRF-Chem model coupled with atmospheric reactions and the secondary organic aerosol model was employed for estimating PM2.5, a-SOA, and b-SOA for 2018. No city attained WHO's annual PM2.5 guideline of 5 μg/m3. Delhi, Dhaka, and Kolkata (63–92 μg/m3) in south Asia were the most polluted, and seven cities (mostly in EUR and NAM) met the WHO target IV (10 μg/m3). The highest SOA levels (2–9 μg/m3) were in the cities of SAS and Africa, but with a low SOA contribution to PM2.5 (3–22%). However, the low levels of SOA (1–3 μg/m3) in EUR and NAM had a higher contribution of SOA to PM2.5 (20–33%). b-SOA were consistent with the region's vegetation and forest cover. The SOA contribution was dominated by residential emissions in all domains (except in the NAF and AUS) (maximum in SAS). The non-coal industry was the second highest contributor (except in EAF, NAF, and AUS) and EUR had the maximum contribution from agriculture and transport. Globally, residential and industry (non-coal and coal) sectors showed the maximum contribution to SOA, with a-SOA and b-SOA being nearly equal. Ridding of biomass and residential burning of solid fuel is the single most action benefiting the PM2.5 and SOA concerns. © 2023 Elsevier Ltd