共 11 条
- [1] Babu M.N., Dutt B.S., Venugopal S., Et al., On the anomalous temperature dependency of fatigue crack growth of SS 316(N) weld, Materials Science and Engineering: A, 527, 20, pp. 5122-5129, (2010)
- [2] Roy S.C., Goyal S., Sandhya R., Et al., Low cycle fatigue life prediction of 316 L(N) stainless steel based on cyclic elasto-plastic response, Nuclear Engineering and Design, 253, pp. 219-225, (2012)
- [3] Shaikh H., Poonguzhali A., Sivaibharasi N., Et al., Corrosion fatigue of aisi type 316ln stainless steel and its weld metal, Corrosion, 65, 1, pp. 37-48, (2009)
- [4] Anita T., Pujar M.G., Shaikh H., Et al., Assessment of Stress Corrosion Crack Initiation and Propagation in AISI Type 316 Stainless Steel by Electrochemical Noise technique, Corrosion Science, 48, 9, pp. 2689-2710, (2006)
- [5] Takumi Terachi K.F.A.K., Microstructural characterization of scc crack tip and oxide film for sus 316 stainless steel in simulated pwr primary water at 320 C, Journal of Nuclear Science and Technology, 2, 42, pp. 225-232, (2005)
- [6] Vankeerberghen M., Bosch R., Van Nieuwenhoven R., In-pile electrochemical measurements on AISI 316 L(N) IG and EUROFER 97-I: experimental results, Journal of Nuclear Materials, 312, 2, pp. 191-198, (2003)
- [7] Standard test method for strain-controlled fatigue testing: E606/E606M-12, pp. 1-16, (2012)
- [8] Jahed H., Varvanifarahani A., Upper and lower fatigue life limits model using energy-based fatigue properties, International Journal of Fatigue, 28, 5-6, pp. 467-473, (2006)
- [9] Roessle M.L., Fatemi A., Khosrovaneh A.K., Variation in cyclic deformation and strain-controlled fatigue properties using different curve fitting and measurement techniques, SAE International, (1999)
- [10] Andresen P.L., Ford F.P., Life prediction by mechanistic modeling and system monitoring of environmental cracking of iron and nickel alloys in aqueous systems, Materials Science & Engineering A, 103, 1, pp. 167-184, (1988)