Multi-view attention-based late fusion (mvalf) cadx system for breast cancer using deep learning

被引:0
|
作者
Iftikhar H. [1 ,2 ]
Shahid A.R. [1 ,2 ]
Raza B. [1 ,2 ]
Khan H.N. [1 ,2 ]
机构
[1] Medical Imaging and Diagnostics Laboratory (MID), National Centre of Artificial Intelligence (NCAI), Islamabad
[2] Department of Computer Science, COMSATS University Islamabad (CUI)
来源
Machine Graphics and Vision | 2020年 / 29卷 / 1-4期
关键词
Breast cancer; Four-view mammogram; Information fusion; Late fusion; Mammogram; Transfer learning;
D O I
10.22630/MGV.2020.29.1.4
中图分类号
学科分类号
摘要
Breast cancer is a leading cause of death among women. Early detection can significantly reduce the mortality rate among women and improve their prognosis. Mammography is the first line procedure for early diagnosis. In the early era, conventional Computer-Aided Diagnosis (CADx) systems for breast lesion diagnosis were based on just single view information. The last decade evidence the use of two views mammogram: Medio-Lateral Oblique (MLO) and Cranio-Caudal (CC) view for the CADx systems. Most recent studies show the effectiveness of four views of mammogram to train CADx system with feature fusion strategy for classification task. In this paper, we proposed an end-To-end Multi-View Attention-based Late Fusion (MVALF) CADx system that fused the obtained predictions of four view models, which is trained for each view separately. These separate models have different predictive ability for each class. The appropriate fusion of multi-view models can achieve better diagnosis performance. So, it is necessary to assign the proper weights to the multi-view classification models. To resolve this issue, attention-based weighting mechanism is adopted to assign the proper weights to trained models for fusion strategy. The proposed methodology is used for the classification of mammogram into normal, mass, calcification, malignant masses and benign masses. The publicly available datasets CBIS-DDSM and mini-MIAS are used for the experimentation. The results show that our proposed system achieved 0.996 AUC for normal vs. abnormal, 0.922 for mass vs. calcification and 0.896 for malignant vs. benign masses. Superior results are seen for the classification of malignant vs benign masses with our proposed approach, which is higher than the results using single view, two views and four views early fusion-based systems. The overall results of each level show the potential of multi-view late fusion with transfer learning in the diagnosis of breast cancer. © 2020 Faculty of Applied Informatics and Mathematics - WZIM, Warsaw University of Life Sciences - SGGW. All rights reserved.
引用
收藏
页码:55 / 78
页数:23
相关论文
共 50 条
  • [1] Attention-based Deep Reinforcement Learning for Multi-view Environments
    Barati, Elaheh
    Chen, Xuewen
    Zhong, Zichun
    AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2019, : 1805 - 1807
  • [2] A multi-view attention-based deep learning system for online deviant content detection
    Yunji Liang
    Bin Guo
    Zhiwen Yu
    Xiaolong Zheng
    Zhu Wang
    Lei Tang
    World Wide Web, 2021, 24 : 205 - 228
  • [3] A multi-view attention-based deep learning system for online deviant content detection
    Liang, Yunji
    Guo, Bin
    Yu, Zhiwen
    Zheng, Xiaolong
    Wang, Zhu
    Tang, Lei
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2021, 24 (01): : 205 - 228
  • [4] A multi-view attention-based deep learning system for online deviant content detection
    Liang, Yunji
    Guo, Bin
    Yu, Zhiwen
    Zheng, Xiaolong
    Wang, Zhu
    Tang, Lei
    World Wide Web, 2021, 24 (01) : 205 - 228
  • [5] Deep Multi-View Breast Cancer Detection: A Multi-View Concatenated Infrared Thermal Images Based Breast Cancer Detection System Using Deep Transfer Learning
    Tiwari, Devanshu
    Dixit, Manish
    Gupta, Kamlesh
    TRAITEMENT DU SIGNAL, 2021, 38 (06) : 1699 - 1711
  • [6] Deep incomplete multi-view clustering via attention-based direct contrastive learning
    Zhang, Kaiwu
    Du, Shiqiang
    Wang, Yaoying
    Deng, Tao
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [7] MFASleepNet: Multi-view fusion attention-based deep neural network for automatic sleep staging
    Hou, Zhoujie
    Pan, Jiahui
    Li, Yuanqing
    2024 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN 2024, 2024,
  • [8] A Multi-View attention-based deep learning framework for malware detection in smart healthcare systems
    Ravi, Vinayakumar
    Alazab, Mamoun
    Selvaganapathy, Shymalagowri
    Chaganti, Rajasekhar
    COMPUTER COMMUNICATIONS, 2022, 195 : 73 - 81
  • [9] An Attention-based Collaboration Framework for Multi-View Network Representation Learning
    Qu, Meng
    Tang, Jian
    Shang, Jingbo
    Ren, Xiang
    Zhang, Ming
    Han, Jiawei
    CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, : 1767 - 1776
  • [10] Incomplete multi-view clustering via attention-based contrast learning
    Zhang, Yanhao
    Zhu, Changming
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (12) : 4101 - 4117