EAEFA: An Efficient Energy-Aware Task Scheduling in Cloud Environment

被引:0
|
作者
Kumar, M. Santhosh [1 ]
Karri, Ganesh Reddy [1 ]
机构
[1] VIT AP Univ, Amaravathi 522237, India
关键词
Task scheduling; cloud computing; Electric fish optimization; HPC2N;
D O I
10.4108/eetsis.3922
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The scheduling of tasks in the cloud is a major challenge for improving resource availability and decreasing the total execution time and energy consumption of operations. Due to its simplicity, efficiency, and effectiveness in identifying global optimums, electric fish optimisation (EFO) has recently garnered a lot of interest as a metaheuristic method for solving optimisation issues. In this study, we apply electric fish optimisation (EAEFA) to the problem of cloud task scheduling in an effort to cut down on power usage and turnaround time. The objective is to finish all tasks in the shortest possible time, or makespan, taking into account constraints like resource availability and task dependencies. In the EAEFA approach, a school of electric fish is used to solve a multi-objective optimization problem that represents the scheduling of tasks. Because electric fish are drawn to high-quality solutions and repelled by low-quality ones, the algorithm is able to converge to a global optimum. Experiments validate EAEFA's ability to solve the task scheduling issue in cloud computing. The suggested scheduling strategy was tested on HPC2N and other large-scale simulations of real-world workloads to measure its makespan time, energy efficiency and other performance metrics. Experimental results demonstrate that the proposed EAEFA method improves performance by more than 30% with respect to makespan time and more than 20% with respect to overall energy consumption compared to state-of-the-art methods.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [1] Energy-Aware Cloud Task Scheduling algorithm in heterogeneous multi-cloud environment
    Pradhan, Roshni
    Satapathy, Suresh Chandra
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2022, 16 (02): : 279 - 284
  • [2] Task clustering-based Energy-aware Workflow Scheduling in Cloud environment
    Choudhary, Anita
    Govil, Mahesh Chandra
    Singh, Girdhari
    Awasthi, Lalit K.
    Pilli, E. S.
    IEEE 20TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS / IEEE 16TH INTERNATIONAL CONFERENCE ON SMART CITY / IEEE 4TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND SYSTEMS (HPCC/SMARTCITY/DSS), 2018, : 968 - 973
  • [3] Energy-aware task scheduling in mobile cloud computing
    Chaogang Tang
    Mingyang Hao
    Xianglin Wei
    Wei Chen
    Distributed and Parallel Databases, 2018, 36 : 529 - 553
  • [4] Energy-aware task scheduling in mobile cloud computing
    Tang, Chaogang
    Hao, Mingyang
    Wei, Xianglin
    Chen, Wei
    DISTRIBUTED AND PARALLEL DATABASES, 2018, 36 (03) : 529 - 553
  • [5] An Innovative Energy-Aware Cloud Task Scheduling Framework
    Alahmadi, Abdulrahman
    Che, Dunren
    Khaleel, Mustafa
    Zhu, Michelle M.
    Ghodous, Parsia
    2015 IEEE 8TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, 2015, : 493 - 500
  • [6] Energy Efficient and Reliability Aware Workflow Task Scheduling in Cloud Environment
    Rambabu Medara
    Ravi Shankar Singh
    Wireless Personal Communications, 2021, 119 : 1301 - 1320
  • [7] Energy Efficient and Reliability Aware Workflow Task Scheduling in Cloud Environment
    Medara, Rambabu
    Singh, Ravi Shankar
    WIRELESS PERSONAL COMMUNICATIONS, 2021, 119 (02) : 1301 - 1320
  • [8] Energy-aware scientific workflow scheduling in cloud environment
    Anita Choudhary
    Mahesh Chandra Govil
    Girdhari Singh
    Lalit K. Awasthi
    Emmanuel S. Pilli
    Cluster Computing, 2022, 25 : 3845 - 3874
  • [9] Energy-aware scientific workflow scheduling in cloud environment
    Choudhary, Anita
    Govil, Mahesh Chandra
    Singh, Girdhari
    Awasthi, Lalit K.
    Pilli, Emmanuel S.
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2022, 25 (06): : 3845 - 3874
  • [10] QET : a QoS-based energy-aware task scheduling method in cloud environment
    Xue, Shengjun
    Zhang, Yiyun
    Xu, Xiaolong
    Xing, Guowen
    Xiang, Haolong
    Ji, Sai
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2017, 20 (04): : 3199 - 3212