Identification of predictive factors of the degree of adherence to the Mediterranean diet through machine-learning techniques

被引:0
|
作者
Arceo-Vilas A. [1 ]
Fernandez-Lozano C. [2 ,3 ]
Pita S. [1 ]
Pértega-Díaz S. [1 ]
Pazos A. [2 ,3 ]
机构
[1] Clinical Epidemiology and Biostat. Res. Group, Inst. de Investigacion Biomedica de A Coruna (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Universidade da Coruña, A Coruña
[2] Department of Computer Science and Information Technologies, Faculty of Computer Science, CITIC-Research Center of Information and Communication Technologies, Universidade da Coruña, A Coruña
[3] Redes de Neuronas Artificiales y Sistemas Adaptativos. Imagen Medica y Diagnostico Radiologico, Inst. de Investigacion Biomedica de A Coruna(INIBIC),Complexo Hospitalario Univ. de A Coruna (CHUAC), SERGAS, Universidade da Coruña, A Coruña
来源
关键词
Feature selection; Machine learning; Mediterranean diet; Nutrition disorders; Nutritional status; Support vector machines;
D O I
10.7717/PEERJ-CS.287
中图分类号
学科分类号
摘要
Food consumption patterns have undergone changes that in recent years have resulted in serious health problems. Studies based on the evaluation of the nutritional status have determined that the adoption of a food pattern-based primarily on a Mediterranean diet (MD) has a preventive role, as well as the ability to mitigate the negative effects of certain pathologies. A group of more than 500 adults aged over 40 years from our cohort in Northwestern Spain was surveyed. Under our experimental design, 10 experiments were run with four different machine-learning algorithms and the predictive factors most relevant to the adherence of a MD were identified. A feature selection approach was explored and under a null hypothesis test, it was concluded that only 16 measures were of relevance, suggesting the strength of this observational study. Our findings indicate that the following factors have the highest predictive value in terms of the degree of adherence to the MD: basal metabolic rate, mini nutritional assessment questionnaire total score, weight, height, bone density, waist-hip ratio, smoking habits, age, EDI-OD, circumference of the arm, activity metabolism, subscapular skinfold, subscapular circumference in cm, circumference of the waist, circumference of the calf and brachial area. © 2020 Arceo-Vilas et al.
引用
收藏
页码:1 / 21
页数:20
相关论文
共 50 条
  • [1] Identification of predictive factors of the degree of adherence to the Mediterranean diet through machine-learning techniques
    Arceo-Vilas, Alba
    Fernandez-Lozano, Carlos
    Pita, Salvador
    Pertega-Diaz, Sonia
    Pazos, Alejandro
    PEERJ COMPUTER SCIENCE, 2020,
  • [2] Mental Health Predictive Analysis Using Machine-Learning Techniques
    Jain, Vanshika
    Kumari, Ritika
    Bansal, Poonam
    Dev, Amita
    SMART TRENDS IN COMPUTING AND COMMUNICATIONS, VOL 4, SMARTCOM 2024, 2024, 948 : 103 - 115
  • [3] Predicting adherence of patients with HF through machine learning techniques
    Karanasiou, Georgia Spiridon
    Tripoliti, Evanthia Eleftherios
    Papadopoulos, Theofilos Grigorios
    Kalatzis, Fanis Georgios
    Goletsis, Yorgos
    Naka, Katerina Kyriakos
    Bechlioulis, Aris
    Errachid, Abdelhamid
    Fotiadis, Dimitrios Ioannis
    HEALTHCARE TECHNOLOGY LETTERS, 2016, 3 (03) : 165 - 170
  • [4] Machine-learning techniques and their applications in manufacturing
    Pham, D. T.
    Afify, A. A.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2005, 219 (05) : 395 - 412
  • [5] "Mediterranean Diet 'reflections'". Estimating adherence to the Mediterranean diet through secondary data
    Finardi, Corrado
    Bucchini, Luca
    Turrini, Aida
    PROGRESS IN NUTRITION, 2018, 20 (03): : 344 - 360
  • [6] Identifying Reliable Predictors of Educational Outcomes Through Machine-Learning Predictive Modeling
    Musso, Mariel F.
    Cascallar, Eduardo C.
    Bostani, Neda
    Crawford, Michael
    FRONTIERS IN EDUCATION, 2020, 5
  • [7] Machine-learning identification of asteroid groups
    Carruba, V.
    Aljbaae, S.
    Lucchini, A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 488 (01) : 1377 - 1386
  • [8] A survey of machine-learning techniques for condition monitoring and predictive maintenance of bearings in grinding machines
    Schwendemann, Sebastian
    Amjad, Zubair
    Sikora, Axel
    COMPUTERS IN INDUSTRY, 2021, 125 (125)
  • [9] Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques
    Sirunyan, A. M.
    Tumasyan, A.
    Adam, W.
    Ambrogi, F.
    Bergauer, T.
    Brandstetter, J.
    Dragicevic, M.
    Eroe, J.
    Del Valle, A. Escalante
    Flechl, M.
    Fruehwirth, R.
    Jeitler, M.
    Krammer, N.
    Kraetschmer, I
    Liko, D.
    Madlener, T.
    Mikulec, I
    Rad, N.
    Schieck, J.
    Schoefbeck, R.
    Spanring, M.
    Spitzbart, D.
    Waltenberger, W.
    Wulz, C-E
    Zarucki, M.
    Drugakov, V
    Mossolov, V
    Gonzalez, J. Suarez
    Darwish, M. R.
    De Wolf, E. A.
    Di Croce, D.
    Janssen, X.
    Lelek, A.
    Pieters, M.
    Sfar, H. Rejeb
    Van Haevermaet, H.
    Van Mechelen, P.
    Van Putte, S.
    Van Remortel, N.
    Blekman, F.
    Bols, E. S.
    Chhibra, S. S.
    D'Hondt, J.
    De Clercq, J.
    Lontkovskyi, D.
    Lowette, S.
    Marchesini, I
    Moortgat, S.
    Python, Q.
    Skovpen, K.
    JOURNAL OF INSTRUMENTATION, 2020, 15 (06):
  • [10] Cross-Cultural Adaptation of Mediterranean Diet Adherence Screener (MEDAS) Into Moroccan Arabic to Measure the Degree of Mediterranean Diet Adherence
    Sammoud, Karima
    Mahdi, Zaynab
    Benzaida, Kamal
    Elrhaffouli, Yassine
    Yamlahi, Maryame
    Gourinda, Adil
    Charif, Faiza
    Bousgheiri, Fadila
    Elbouri, Hicham
    Adil, Najdi
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2023, 15 (09)