A prior error estimate for linear finite element approximation to interface optimal control problems

被引:0
|
作者
Guan, Hongbo [1 ]
Hao, Chaoyang [2 ]
Hong, Yapeng [1 ]
Yin, Pei [3 ]
机构
[1] College of Mathematics and Information Science, Zhengzhou University of Light Industry, Zhengzhou,450002, China
[2] Department of Mathematical Sciences, Tongji University, Shanghai,200092, China
[3] Business School, University of Shanghai for Science and Technology, Shanghai,200093, China
来源
基金
中国国家自然科学基金;
关键词
Optimal control systems - Errors;
D O I
暂无
中图分类号
学科分类号
摘要
This paper considers a linear finite element method for the constrained optimal control problems (OCPs) governed by elliptic interface equations. The state and adjoint state are approximated by the conforming P1 elements, while the control is approximated with the orthogonal projection of the adjoint state. Optimal order error estimates are proved in both L2-norm and broken energy norm. Lastly, some numerical results are presented to confirm the theoretical analysis. © 2020.
引用
收藏
页码:96 / 101
相关论文
共 50 条
  • [1] ERROR ESTIMATES FOR SPARSE OPTIMAL CONTROL PROBLEMS BY PIECEWISE LINEAR FINITE ELEMENT APPROXIMATION
    Song, Xiaoliang
    Chen, Bo
    Yu, Bo
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2021, 39 (03): : 471 - 492
  • [2] Robust error estimates for the finite element approximation of elliptic optimal control problems
    Gong, Wei
    Yan, Ningning
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (06) : 1370 - 1381
  • [3] A PRIORI ERROR ANALYSIS FOR FINITE ELEMENT APPROXIMATION OF PARABOLIC OPTIMAL CONTROL PROBLEMS WITH POINTWISE CONTROL
    Gong, Wei
    Hinze, Michael
    Zhou, Zhaojie
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (01) : 97 - 119
  • [4] AN ERROR ESTIMATE FOR SYMPLECTIC EULER APPROXIMATION OF OPTIMAL CONTROL PROBLEMS
    Karlsson, Jesper
    Larsson, Stig
    Sandberg, Mattias
    Szepessy, Anders
    Tempone, Raul
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (02): : A946 - A969
  • [5] SOME ERROR ESTIMATES OF FINITE VOLUME ELEMENT APPROXIMATION FOR ELLIPTIC OPTIMAL CONTROL PROBLEMS
    Luo, Xianbing
    Chen, Yanping
    Huang, Yunqing
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2013, 10 (03) : 697 - 711
  • [6] A posteriori error estimates for mixed finite element approximation of nonlinear quadratic optimal control problems
    Chen, Yanping
    Lu, Zuliang
    Fu, Min
    OPTIMIZATION METHODS & SOFTWARE, 2013, 28 (01): : 37 - 53
  • [7] Finite element approximation of elliptic dirichlet optimal control problems
    Vexler, B.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2007, 28 (7-8) : 957 - 973
  • [8] Finite Element Approximation of Semilinear Parabolic Optimal Control Problems
    Fu, Hongfei
    Rui, Hongxing
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2011, 4 (04) : 489 - 504
  • [9] Finite element error analysis of affine optimal control problems
    Jork, Nicolai
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2024, 30
  • [10] Error estimates for the finite element approximation of bilinear boundary control problems
    Winkler, Max
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2020, 76 (01) : 155 - 199