共 32 条
- [1] Zhou W, Zhou W Z., Enhanced thermal conductivity accident tolerant fuels for improved reactor safety - a comprehensive review[J], Annals of Nuclear Energy, 119, pp. 66-86, (2018)
- [2] Parker S S, White J T, Hosemann P, Et al., Thermophysical properties of thorium mononitride from 298 to 1700 K, Journal of Nuclear Materials, 526, (2019)
- [3] Zinkle S J, Was G S., Materials challenges in nuclear energy[J], Acta Materialia, 61, 3, pp. 735-758, (2013)
- [4] Katoh Y, Snead L L., Silicon carbide and its composites for nuclear applications - Historical overview, Journal of Nuclear Materials, 526, (2019)
- [5] Metzger K E, Knight T W, Roberts E, Et al., Determination of mechanical behavior of U<sub>3</sub>Si<sub>2</sub> nuclear fuel by microindentation method[J], Progress in Nuclear Energy, 99, pp. 147-154, (2017)
- [6] Zinkle S J, Terrani K A, Gehin J C, Et al., Accident tolerant fuels for LWRs: a perspective[J], Journal of Nuclear Materials, 448, 1 – 3, pp. 374-379, (2014)
- [7] Johnson K D, Raftery A M, Lopes D A, Et al., Fabrication and microstructural analysis of UN-U<sub>3</sub>Si<sub>2</sub> composites for accident tolerant fuel applications, Journal of Nuclear Materials, 477, pp. 18-23, (2016)
- [8] Ortega L H, Blamer B J, Evans J A, Et al., Development of an accident-tolerant fuel composite from uranium mononitride (UN) and uranium sesquisilicide (U<sub>3</sub>Si<sub>2</sub>) with increased uranium loading[J], Journal of Nuclear Materials, 471, pp. 116-121, (2016)
- [9] ZHANG Haiqing, LU Linyuan, WANG Peng, Et al., Evaluation of influence of fault tolerant fuel structure on thermal conductivity, Nuclear Techniques, 44, 3, (2021)
- [10] Harp J M, Lessing P A, Hoggan R E., Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation[J], Journal of Nuclear Materials, 466, pp. 728-738, (2015)