Quantum Kernels for Real-World Predictions Based on Electronic Health Records

被引:14
|
作者
Krunic Z. [1 ]
Flother F. [2 ]
Seegan G. [1 ]
Earnest-Noble N. [3 ]
Omar S. [3 ]
机构
[1] Amgen, Thousand Oaks, 91320, CA
[2] IBM Quantum, IBM Switzerland Ltd., Zurich
[3] IBM Thomas J. Watson Research Center, IBM Quantum, Yorktown Heights, 10598, NY
关键词
Artificial intelligence; digital health; electronic health records (EHR); empirical quantum advantage (EQA); machine learning; quantum kernels; real-world data; small data sets; support vector machines (SVM);
D O I
10.1109/TQE.2022.3176806
中图分类号
学科分类号
摘要
Research on near-term quantum machine learning has explored how classical machine learning algorithms endowed with access to quantum kernels (similarity measures) can outperform their purely classical counterparts. Although theoretical work has shown a provable advantage on synthetic data sets, no work done to date has studied empirically whether the quantum advantage is attainable and with what data. In this article, we report the first systematic investigation of empirical quantum advantage (EQA) in healthcare and life sciences and propose an end-to-end framework to study EQA. We selected electronic health records data subsets and created a configuration space of 5-20 features and 200-300 training samples. For each configuration coordinate, we trained classical support vector machine models based on radial basis function kernels and quantum models with custom kernels using an IBM quantum computer, making this one of the largest quantum machine learning experiments to date. We empirically identified regimes where quantum kernels could provide an advantage and introduced a terrain ruggedness index, a metric to help quantitatively estimate how the accuracy of a given model will perform. The generalizable framework introduced here represents a key step toward a priori identification of data sets where quantum advantage could exist. © 2020 IEEE.
引用
收藏
相关论文
共 50 条
  • [1] Mining Electronic Health Records for Real-World Evidence
    Zang, Chengxi
    Pan, Weishen
    Wang, Fei
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 5837 - 5838
  • [2] Assessing function of electronic health records for real-world data generation
    Guinn, Daphne
    Wilhelm, Erin E.
    Lieberman, Grazyna
    Khozin, Sean
    BMJ EVIDENCE-BASED MEDICINE, 2019, 24 (03) : 95 - 98
  • [3] Biases in Electronic Health Records Data for Generating Real-World Evidence: An Overview
    Ban Al-Sahab
    Alan Leviton
    Tobias Loddenkemper
    Nigel Paneth
    Bo Zhang
    Journal of Healthcare Informatics Research, 2024, 8 : 121 - 139
  • [4] Biases in Electronic Health Records Data for Generating Real-World Evidence: An Overview
    Al-Sahab, Ban
    Leviton, Alan
    Loddenkemper, Tobias
    Paneth, Nigel
    Zhang, Bo
    JOURNAL OF HEALTHCARE INFORMATICS RESEARCH, 2024, 8 (01) : 121 - 139
  • [5] A Post-Marketing Drug Evaluation Framework Based on Real-World Electronic Health Records Data
    Wang, Yu
    Ma, Shuang
    Ru, Hua
    Ni, Hongyi
    Li, Jingsong
    MEDINFO 2023 - THE FUTURE IS ACCESSIBLE, 2024, 310 : 134 - 138
  • [6] Secondary Use of Electronic Health Records for Building Large, Real-World ILD Cohorts
    Farrand, E. D.
    Gologorskaya, O.
    Mills, H.
    Radhakrishnan, L.
    Collard, H. R.
    Butte, A.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2021, 203 (09)
  • [7] Real-World Evidence of Indapamide-Induced Rhabdomyolysis: A Retrospective Analysis of Electronic Health Records
    Alroba, Raseel
    Alfakhri, Almaha
    Badreldin, Hisham
    Alrwisan, Adel
    Almadani, Ohoud
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2024, 33 (11)
  • [8] Unsupervised anomaly detection of implausible electronic health records: a real-world evaluation in cancer registries
    Philipp Röchner
    Franz Rothlauf
    BMC Medical Research Methodology, 23
  • [9] Approach to machine learning for extraction of real-world data variables from electronic health records
    Adamson, Blythe
    Waskom, Michael
    Blarre, Auriane
    Kelly, Jonathan
    Krismer, Konstantin
    Nemeth, Sheila
    Gippetti, James
    Ritten, John
    Harrison, Katherine
    Ho, George
    Linzmayer, Robin
    Bansal, Tarun
    Wilkinson, Samuel
    Amster, Guy
    Estola, Evan
    Benedum, Corey M.
    Fidyk, Erin
    Estevez, Melissa
    Shapiro, Will
    Cohen, Aaron B.
    FRONTIERS IN PHARMACOLOGY, 2023, 14
  • [10] Synthetic Data as a Proxy for Real-World Electronic Health Records in the Patient Length of Stay Prediction
    Bietsch, Dominik
    Stahlbock, Robert
    Voss, Stefan
    SUSTAINABILITY, 2023, 15 (18)