Behaviour classification of cyber attacks using convolutional neural networks

被引:0
|
作者
Lin, Wen-Hui [1 ]
Wang, Ping [1 ]
Lin, Hsiao-Chung [1 ]
Wu, Bao-Hua [1 ]
Tsai, Jeng-Ying [1 ]
机构
[1] Department of Information Management, Kun Shan University, Tainan,710, Taiwan
来源
Journal of Computers (Taiwan) | 2021年 / 32卷 / 01期
关键词
Convolution - Viruses - Network security - Deep neural networks - Linear transformations - Convolutional neural networks - Intrusion detection - Decision trees - Network protocols - Feature extraction - Computer viruses;
D O I
暂无
中图分类号
学科分类号
摘要
Most existing proposals are invariably based on the assumption that defence mechanisms can filter malicious connections. This assumption cannot be guaranteed in practical applications. Remote connections generally bypass the firewall and virus detection engines by using legal network protocols, such as http, ICMP, and SSL; once connected, clients can upload malicious applications to the host. Defenders require an efficient network detection approach that can quickly learn new network behavioural features for detecting network intrusions. Deep learning (DL) can utilise enhanced features based on behaviour patterns extracted from intrusion detection datasets. Accordingly, this study focuses on network intrusion detection by using LeNet-5 model with back propagation incorporating ID3 decision tree scheme for feature reduction. In the study, behavioural feature selection, image matrix transformation, and weight comparison were used to classify network threats. The experimental results indicated that the prediction accuracy of threat classification increased with an increase in the size of the data sample (N). The prediction accuracy of intrusion detection increased up to 96.02% for six subcategories with N ≥ 10,000 and 93.75% for 39 subcategories with N ≥ 500. The overall accuracy rate was 94.89%. © 2021 Computer Society of the Republic of China. All rights reserved.
引用
收藏
页码:65 / 82
相关论文
共 50 条
  • [1] Detecting Cyber Attacks in Industrial Control Systems Using Convolutional Neural Networks
    Kravchik, Moshe
    Shabtai, Asaf
    CPS-SPC'18: PROCEEDINGS OF THE 2018 WORKSHOP ON CYBER-PHYSICAL SYSTEMS SECURITY AND PRIVACY, 2018, : 72 - 83
  • [2] Adversarial Attacks with Defense Mechanisms on Convolutional Neural Networks and Recurrent Neural Networks for Malware Classification
    Alzaidy, Sharoug
    Binsalleeh, Hamad
    APPLIED SCIENCES-BASEL, 2024, 14 (04):
  • [3] Grasping Adversarial Attacks on Deep Convolutional Neural Networks for Cholangiocarcinoma Classification
    Diyasa, I. Gede Susrama Mas
    Wahid, Radical Rakhman
    Amiruddin, Brilian Putra
    2021 INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING (EHB 2021), 9TH EDITION, 2021,
  • [4] Plant Classification using Convolutional Neural Networks
    Yalcin, Hulya
    Razavi, Salar
    2016 FIFTH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS), 2016, : 233 - 237
  • [5] Sound Classification Using Convolutional Neural Networks
    Jaiswal, Kaustumbh
    Patel, Dhairya Kalpeshbhai
    2018 SEVENTH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING IN EMERGING MARKETS (CCEM), 2018, : 81 - 84
  • [6] Clothing Classification Using Convolutional Neural Networks
    Hodecker, Andrei
    Fernandes, Anita M. R.
    Steffens, Alisson
    Crocker, Paul
    Leithardt, Valderi R. Q.
    2020 15TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI'2020), 2020,
  • [7] Strabismus Classification using Convolutional Neural Networks
    Kim, Donghwan
    Joo, Jaehan
    Zhu, Guohua
    Seo, Jeongbin
    Ha, Jaeseung
    Kim, Suk Chan
    3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION (IEEE ICAIIC 2021), 2021, : 216 - 218
  • [8] Query Classification Using Convolutional Neural Networks
    Zhang, Hanxiao
    Song, Wei
    Liu, Lizhen
    Du, Chao
    Zhao, Xinlei
    2017 10TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 2, 2017, : 441 - 444
  • [9] Classification of Fruits using Convolutional Neural Networks
    Raut, Roshani
    Jadhav, Anuja
    Sorte, Chaitrali
    Chaudhari, Anagha
    2022 SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRICAL, COMPUTING, COMMUNICATION AND SUSTAINABLE TECHNOLOGIES (ICAECT), 2022,
  • [10] Texture classification using convolutional neural networks
    Tivive, Fok Hing Chi
    Bouzerdoum, Abdesselam
    TENCON 2006 - 2006 IEEE REGION 10 CONFERENCE, VOLS 1-4, 2006, : 660 - +