A Bayesian approach for inferring global points of departure from transcriptomics data

被引:0
|
作者
Reynolds J. [1 ]
Malcomber S. [1 ]
White A. [1 ]
机构
[1] Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire
关键词
Bayesian; Concentration–response; NAM; NGRA; Point-of-departure; Transcriptomics;
D O I
10.1016/j.comtox.2020.100138
中图分类号
学科分类号
摘要
Bayesian statistical methods allow for robust scientific inferences. Increased robustness is achieved by using prior distributions to regularise parameter estimates and by defining a model structure which accurately reflects the variance structure of the dataset of interest. We develop a Bayesian model to describe transcriptomics concentration–response data. This model is designed to infer gene-level points of departure and a method to derive a global point of departure from these thousands of gene level estimates is presented. We believe such estimates may prove useful for characterising maximum no effect concentrations for the purposes of hazard identification in next generation risk assessment. © 2020 The Author(s)
引用
收藏
相关论文
共 50 条
  • [1] A Bayesian Approach to Inferring the Phylogenetic Structure of Communities from Metagenomic Data
    O'Brien, John D.
    Didelot, Xavier
    Iqbal, Zamin
    Amenga-Etego, Lucas
    Ahiska, Bartu
    Falush, Daniel
    GENETICS, 2014, 197 (03) : 925 - +
  • [2] A BAYESIAN APPROACH FOR INFERRING NEURONAL CONNECTIVITY FROM CALCIUM FLUORESCENT IMAGING DATA
    Mishchenko, Yuriy
    Vogelstein, Joshua T.
    Paninski, Liam
    ANNALS OF APPLIED STATISTICS, 2011, 5 (2B): : 1229 - 1261
  • [3] Inferring Cell-Cell Communications from Spatially Resolved Transcriptomics Data Using a Bayesian Tweedie Model
    Wu, Dongyuan
    Gaskins, Jeremy T.
    Sekula, Michael
    Datta, Susmita
    GENES, 2023, 14 (07)
  • [4] FROM 'POINTS OF DEPARTURE'
    MOLE, J
    POETRY REVIEW, 1989, 79 (04): : 14 - 15
  • [5] A FULLY BAYESIAN APPROACH FOR INFERRING PHYSICAL PROPERTIES WITH CREDIBILITY INTERVALS FROM NOISY ASTRONOMICAL DATA
    Vono, Maxime
    Bron, Emeric
    Chainais, Pierre
    Le Petit, Franck
    Bardeau, Sebastien
    Bourguignon, Sebastien
    Chanussot, Jocelyn
    Gaudel, Mathilde
    Gerin, Maryvonne
    Goicoechea, Javier R.
    Gratier, Pierre
    Guzman, Viviana V.
    Hughes, Annie
    Kainulainen, Jouni
    Languignon, David
    Le Bourlot, Jacques
    Levrier, Francois
    Listz, Harvey S.
    Oberg, Karin I.
    Orkisz, Jan H.
    Peretto, Nicolas
    Pety, Jerome
    Roueff, Antoine
    Roueff, Evelyne
    Sievers, Albrecht
    Magalhaes, Victor de Souza
    Tremblin, Pascal
    2019 10TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING - EVOLUTION IN REMOTE SENSING (WHISPERS), 2019,
  • [6] A Bayesian approach to estimate material properties from global statistical data
    Richard, Benjamin
    Adelaide, Lucas
    Cremona, Christian
    EUROPEAN JOURNAL OF ENVIRONMENTAL AND CIVIL ENGINEERING, 2012, 16 (3-4) : 460 - 470
  • [7] Inferring single-cell and spatial microRNA activity from transcriptomics data
    Herbst, Efrat
    Mandel-Gutfreund, Yael
    Yakhini, Zohar
    Biran, Hadas
    COMMUNICATIONS BIOLOGY, 2025, 8 (01)
  • [8] A Bayesian approach to inferring population structure from dominant markers
    Holsinger, KE
    Lewis, PO
    Dey, DK
    MOLECULAR ECOLOGY, 2002, 11 (07) : 1157 - 1164
  • [9] A Bayesian method for inferring quantitative information from FRET data
    Lichten, Catherine A.
    Swain, Peter S.
    BMC BIOPHYSICS, 2011, 4
  • [10] A Bayesian Approach to Determining Ground Strike Points in LLS Data
    Lesejane, Wandile
    Hunt, Hugh
    Schumann, Carina
    Ajoodha, Ritesh
    2022 36TH INTERNATIONAL CONFERENCE ON LIGHTNING PROTECTION (ICLP 2022), 2022, : 434 - 439