Domain-Centroid-Guided Progressive Teacher-Based Knowledge Distillation for Source-Free Domain Adaptation of Histopathological Images

被引:0
|
作者
Cheng K.-S. [1 ]
Zhang Q.-W. [1 ]
Tsai H.-W. [2 ]
Li N.-T. [3 ]
Chung P.-C. [4 ]
机构
[1] National Cheng Kung University, Department of Biomedical Engineering, Tainan
[2] National Cheng Kung University Hospital, Department of Pathology, Tainan
[3] National Cheng Kung University, Department of Computer and Communication Engineering, Tainan
[4] National Cheng Kung University, Department of Electrical Engineering, Tainan
来源
关键词
Histopathology image; knowledge distillation; progressive teacherâ€Â"student adaption; source-free domain adaptation;
D O I
10.1109/TAI.2023.3305331
中图分类号
学科分类号
摘要
Deep neural networks are commonly used for histopathology image analysis. However, such data-driven models are sensitive to style variances across scanners and suffer a significant performance degradation as a result. Although the network performance can be improved by using domain adaptation methods, the source dataset required to perform the adaptation process is generally unavailable. This study shows that the performance degradation of deep neural networks when applied to histopathology images is the result partly of the wide distribution of the features generated when inferring the features of the target model using the feature centers of the source model. To address this problem, a teacher-student framework, designated as domain-centroid-guided progressive teacher-based knowledge distillation (DCGP-KD), is proposed which aims to learn compact target features in order to provide more accurate pseudo labels for the target model without the need for the original source dataset. In the proposed framework, the class-wise feature centers of the source data are progressively adapted to the distribution of the target data, and compact target features are then generated by gathering the features based on their class-wise centers. A strategy is additionally proposed to prevent catastrophic forgetting during the progressive adaption process. Finally, a prediction consistency loss function is introduced to improve the robustness of the target dataset. The feasibility of the proposed framework is demonstrated experimentally for the illustrative case of the tumor classification of histopathological images with staining variations. The results show that DCGP-KD provides a promising assistive tool for pathologists in various histopathological analysis tasks. © 2020 IEEE.
引用
收藏
页码:1831 / 1843
页数:12
相关论文
共 50 条
  • [1] Multiple Source-Free Domain Adaptation Network Based on Knowledge Distillation for Machinery Fault Diagnosis
    Yue, Ke
    Li, Jipu
    Chen, Zhuyun
    Huang, Ruyi
    Li, Weihua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [2] Uncertainty-Guided Source-Free Domain Adaptation
    Roy, Subhankar
    Trapp, Martin
    Pilzer, Andrea
    Kannala, Juho
    Sebe, Nicu
    Ricci, Elisa
    Solin, Arno
    COMPUTER VISION, ECCV 2022, PT XXV, 2022, 13685 : 537 - 555
  • [3] Exploring Relational Knowledge for Source-Free Domain Adaptation
    Ma, You
    Chai, Lin
    Tu, Shi
    Wang, Qingling
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (02) : 1825 - 1839
  • [4] Unleashing Knowledge Potential of Source Hypothesis for Source-Free Domain Adaptation
    Hu, Bingyu
    Liu, Jiawei
    Zheng, Kecheng
    Zha, Zheng-Jun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 5422 - 5434
  • [5] Generalized Source-free Domain Adaptation
    Yang, Shiqi
    Wang, Yaxing
    van de Weijer, Joost
    Herranz, Luis
    Jui, Shangling
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8958 - 8967
  • [6] Universal Source-Free Domain Adaptation
    Kundu, Jogendra Nath
    Venkat, Naveen
    Rahul, M., V
    Babu, R. Venkatesh
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 4543 - 4552
  • [7] Imbalanced Source-free Domain Adaptation
    Li, Xinhao
    Li, Jingjing
    Zhu, Lei
    Wang, Guoqing
    Huang, Zi
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 3330 - 3339
  • [8] Progressive Source-Aware Transformer for Generalized Source-Free Domain Adaptation
    Tang, Song
    Shi, Yuji
    Song, Zihao
    Ye, Mao
    Zhang, Changshui
    Zhang, Jianwei
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 4138 - 4152
  • [9] Source bias reduction for source-free domain adaptation
    Tian, Liang
    Ye, Mao
    Zhou, Lihua
    Wang, Zhenbin
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (SUPPL 1) : 883 - 893
  • [10] Source-free unsupervised domain adaptation: A survey
    Fang, Yuqi
    Yap, Pew-Thian
    Lin, Weili
    Zhu, Hongtu
    Liu, Mingxia
    NEURAL NETWORKS, 2024, 174