On statistical convergence in fuzzy metric spaces

被引:0
|
作者
Li, Changqing [1 ]
Zhang, Yanlan [2 ]
Zhang, Jing [1 ]
机构
[1] School of Mathematics and Statistics, Minnan Normal University, Zhangzhou, China
[2] College of Computer, Minnan Normal University, Zhangzhou, China
来源
关键词
Set theory;
D O I
暂无
中图分类号
学科分类号
摘要
The idea of statistical convergence, which was first introduced by Fast and Steinhaus independently in 1951, has become one of the most active area of research in the field of mathematics. Recently, it has been applied to the realm of metrics by several authors and some useful results have been obtained. However, the existence of non-completable fuzzy metric spaces, in the sense of George and Veeramani, demonstrates that the theory of fuzzy metrics seem to be richer than that of metrics. In view of this, we attempt to generalize this convergence to the realm of fuzzy metrics. Firstly, we introduce the concept of sts-convergence in fuzzy metric spaces. Then we characterize those fuzzy metric spaces in which all convergent sequences are sts-convergent. Finally, we study sts-Cauchy sequences in fuzzy metric spaces and sts-completeness of fuzzy metric spaces. © 2020 - IOS Press and the authors. All rights reserved.
引用
收藏
页码:3987 / 3993
相关论文
共 50 条
  • [1] On statistical convergence in fuzzy metric spaces
    Li, Changqing
    Zhang, Yanlan
    Zhang, Jing
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (03) : 3987 - 3993
  • [2] On convergence in fuzzy metric spaces
    Gregori, Valentin
    Lopez-Crevillen, Andres
    Morillas, Samuel
    Sapena, Almanzor
    TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (18) : 3002 - 3006
  • [3] On statistical convergence in cone metric spaces
    Li, Kedian
    Lin, Shou
    Ge, Ying
    TOPOLOGY AND ITS APPLICATIONS, 2015, 196 : 641 - 651
  • [4] STATISTICAL CONVERGENCE IN PARTIAL METRIC SPACES
    Nuray, Fatih
    KOREAN JOURNAL OF MATHEMATICS, 2022, 30 (01): : 155 - 160
  • [5] Strong Convergence in Fuzzy Metric Spaces
    Gregori, Valentin
    Minana, Juan-Jose
    FILOMAT, 2017, 31 (06) : 1619 - 1625
  • [6] Cauchyness and convergence in fuzzy metric spaces
    Gregori, Valentin
    Minana, Juan-Jose
    Morillas, Samuel
    Sapena, Almanzor
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2017, 111 (01) : 25 - 37
  • [7] Cauchyness and convergence in fuzzy metric spaces
    Valentín Gregori
    Juan-José Miñana
    Samuel Morillas
    Almanzor Sapena
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2017, 111 : 25 - 37
  • [8] A NOTE ON CONVERGENCE IN FUZZY METRIC SPACES
    Gregori, V.
    Minana, J. J.
    Morillas, S.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2014, 11 (04): : 75 - 85
  • [9] Statistical convergence in intuitionistic fuzzy G-metric spaces with order n
    Khan, Vakeel A.
    Rahaman, S. K. Ashadul
    FILOMAT, 2024, 38 (08) : 2785 - 2812
  • [10] FUZZY METRICS AND STATISTICAL METRIC SPACES
    KRAMOSIL, I
    MICHALEK, J
    KYBERNETIKA, 1975, 11 (05) : 336 - 344