Biomass derived hard carbon materials for sodium ion battery anodes: Exploring the influence of carbon source on structure and sodium storage performance

被引:8
|
作者
Yan, Boting [1 ,2 ]
Han, Cheng [1 ,2 ]
Dai, Yiming [1 ,2 ]
Li, Mingyang [2 ]
Wu, Zhaoyang [2 ]
Gao, Xiangpeng [1 ,2 ]
机构
[1] Anhui Univ Technol, Key Lab Met Emiss Reduct & Resources Recycling, Minist Educ, Maanshan 243002, Anhui, Peoples R China
[2] Anhui Univ Technol, Sch Met Engn, Maanshan 243032, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Energy storage; Sodium ion battery; Hard carbon; Biomass materials; SURFACE; OXYGEN; ELECTRODES; MECHANISM; LITHIUM; DESIGN; SHEETS; ROUTE;
D O I
10.1016/j.fuel.2024.132141
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Compared to the scarce resources of lithium-ion batteries, sodium ion batteries have gradually become an ideal carrier for large-scale energy storage systems due to their abundant raw material resources. In recent years, hard carbon as an anode material for sodium ion batteries has attracted much attention. Biomass materials have become an ideal hard carbon precursor due to their natural and renewable advantages. This article evaluates the effect of hard carbon derived from three types of biomass waste (peanut shell, coffee grounds, and sugarcane bagasse) on the electrochemical performance of sodium ion batteries through pre carbonization pyrolysis method. The three materials exhibit different structures and surface functional group contents. Compared with coffee grounds and sugarcane bagasse, peanut shell-derived hard carbon has lower structural ordering and smaller specific surface area, and exhibits a higher initial Coulombic efficiency of 53.84 %. The initial reversible capacity of the HC-P electrode is 203.6 mAh/g, and the Coulombic efficiency of the electrode is close to 100 % with a reversible capacity of 127.1 mAh/g and a capacity retention of 81.4 % after cycling 100 at 1C current. The excellent electrochemical properties of HC-P can be attributed to its higher C=O bond content, larger layer spacing and lamellar structure.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Biomass-Derived Hard Carbon Materials for High-Performance Sodium-Ion Battery
    Chen, Yixing
    Cui, Jiaming
    Wang, Sheng
    Xu, Wentao
    Guo, Ruoqi
    COATINGS, 2025, 15 (02):
  • [2] Optimizing Hard Carbon Anodes from Agricultural Biomass for Superior Lithium and Sodium Ion Battery Performance
    Naik, Pooja B.
    Reddy, Naveen S.
    Nataraj, S. K.
    Maiti, Uday N.
    Beere, Hemanth K.
    Yadav, Prahlad
    Jung, Hyun Y.
    Ghosh, Debasis
    CHEMSUSCHEM, 2025, 18 (02)
  • [3] Influence of Hard Carbon Materials Structure on the Performance of Sodium-Ion Batteries
    Ren, Yifei
    Wang, Zhixing
    Wang, Jiexi
    Yan, Guochun
    Li, Xinhai
    Peng, Wenjie
    Guo, Huajun
    ENERGY & FUELS, 2023, 37 (18) : 14365 - 14374
  • [4] The Performance of Hard Carbon in a Sodium Ion Battery and Influence of the Sodium Metal in Observed Properties
    Ledwoch, D.
    Brett, D. J. L.
    Kendrick, E.
    GENERAL SOCIETY STUDENT POSTER SESSION, 2016, 72 (33): : 17 - 22
  • [5] Influence of Hard/Soft Carbon Ratio in Composite Anodes for Enhanced Performance in Sodium-Ion Battery
    Ahmed, Israr
    Rosson, Lucas
    Forsyth, Maria
    Byrne, Nolene
    CHEMELECTROCHEM, 2025, 12 (06):
  • [6] Impact of the Acid Treatment on Lignocellulosic Biomass Hard Carbon for Sodium-Ion Battery Anodes
    Dou, Xinwei
    Hasa, Ivana
    Saurel, Damien
    Jauregui, Maria
    Buchholz, Daniel
    Rojo, Teofilo
    Passerini, Stefano
    CHEMSUSCHEM, 2018, 11 (18) : 3276 - 3285
  • [7] HYBRID CARBON MATERIALS FOR SODIUM-ION BATTERY ANODES
    Nasraoui, M.
    Urvanov, S. A.
    Filimonenkov, I. S.
    Mordkovich, V. Z.
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA I KHIMICHESKAYA TEKHNOLOGIYA, 2023, 66 (10): : 89 - 96
  • [8] Regulating the Pore Structure of Biomass-Derived Hard Carbon for an Advanced Sodium-Ion Battery
    Tang, Zheng
    Liu, Rui
    Jiang, Dan
    Cai, Siqi
    Li, Huanhuan
    Sun, Dan
    Tang, Yougen
    Wang, Haiyan
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (36) : 47504 - 47512
  • [9] Hard Carbon as Sodium-Ion Battery Anodes: Progress and Challenges
    Xiao, Biwei
    Rojo, Teofilo
    Li, Xiaolin
    CHEMSUSCHEM, 2019, 12 (01) : 133 - 144
  • [10] Pinecone biomass-derived hard carbon anodes for high-performance sodium-ion batteries
    Zhang, Tao
    Mao, Jing
    Liu, Xiaolin
    Xuan, Minjie
    Bi, Kai
    Zhang, Xiao Li
    Hu, Junhua
    Fan, Jiajie
    Chen, Shimou
    Shao, Guosheng
    RSC ADVANCES, 2017, 7 (66): : 41504 - 41511