共 20 条
- [1] YU Juan, YANG Yan, YANG Zhifang, Et al., Fast probabilistic energy flow analysis based on deep learning[J], Proceedings of the CSEE, 39, 1, pp. 22-30, (2019)
- [2] LI Guoqing, LU Weihua, LI He, Et al., Fast calculation method of time sequence probabilistic power flow based on fuzzy C-means clustering[J], Electric Power Automation Equipment, 41, 4, pp. 116-122, (2021)
- [3] YANG Yan, YANG Zhifang, YU Juan, Et al., Fast analysis of N-1 contingency screening with uncertainty scenarios based on deep learning[J], Proceedings of the CSEE, 41, 8, pp. 2716-2725, (2021)
- [4] LIN W, YANG Z F, YU J, Et al., Toward fast calculation of probabilistic optimal power flow[C]∥2020 IEEE Power & Energy Society General Meeting(PESGM), (2020)
- [5] HASAN F, KARGARIAN A, MOHAMMADI J., Hybrid learning aided inactive constraints filtering algorithm to enhance AC OPF solution time[J], IEEE Transactions on Industry Applications, 57, 2, pp. 1325-1334, (2021)
- [6] YANG Z F, ZHONG H W, BOSE A, Et al., A linearized OPF model with reactive power and voltage magnitude:a pathway to improve the MW-only DC OPF[J], IEEE Transactions on Power Systems, 33, 2, pp. 1734-1745, (2018)
- [7] REDDY S S., Optimal power flow using hybrid differential evolution and harmony search algorithm[J/OL], International Journal of Machine Learning & Cybernetics
- [8] GUHA N, WANG Z, WYTOCK M, Et al., Machine learning for AC optimal power flow[EB/OL]
- [9] RAHMAN J, FENG C, ZHANG J., A learning-augmented approach for AC optimal power flow[J], International Journal of Electrical Power & Energy Systems, 130, (2021)
- [10] YANG Y, YANG Z F, YU J, Et al., Fast calculation of probabilistic power flow:a model-based deep learning approach[J], IEEE Transactions on Smart Grid, 11, 3, pp. 2235-2244, (2020)