A Deep Learning-Based Algorithm for Energy and Performance Optimization of Computational Offloading in Mobile Edge Computing

被引:0
|
作者
Khan I. [1 ]
Raza S. [2 ]
Rehman W.U. [1 ,3 ]
Khan R. [1 ,4 ]
Nahida K. [5 ]
Tao X. [1 ]
机构
[1] National Engineering Laboratory for Mobile Network Technologies, Beijing University of Posts and Telecommunications, Beijing
[2] Department of Computer Science, National Textile University, Faisalabad
[3] Department of Computer Science, University of Peshawar, Peshawar
[4] Department of Computer Science, University of Engineering and Technology Mardan
[5] Beijing Laboratory of Advanced Information Network, Beijing Key Laboratory of Network System Architecture and Convergence, Beijing University of Posts and Telecommunications
关键词
Computation offloading - Cost functions - Decision making - Deep neural networks - Energy efficiency - Gradient methods - Mean square error - Mobile edge computing;
D O I
10.1155/2023/1357343
中图分类号
学科分类号
摘要
Mobile edge computing (MEC) has produced incredible outcomes in the context of computationally intensive mobile applications by offloading computation to a neighboring server to limit the energy usage of user equipment (UE). However, choosing a pool of application components to offload in addition to the volume of data transfer along with the latency in communication is an intricate issue. In this article, we introduce a novel energy-efficient offloading scheme based on deep neural networks. The proposed scheme trains an intelligent decision-making model that picks a robust pool of application components. The selection is based on factors such as the remaining UE battery power, network conditions, the volume of data transfer, required energy by the application components, postponements in communication, and computational load. We have designed the cost function taking all the mentioned factors, get the cost for all conceivable combinations of component offloading decisions, pick the robust decisions over an extensive dataset, and train a deep neural network as a substitute for the exhaustive computations associated. Model outcomes illustrate that our proposed scheme is proficient in the context of accuracy, root mean square error (RMSE), mean absolute error (MAE), and energy usage of UE. © 2023 Israr Khan et al.
引用
收藏
相关论文
共 50 条
  • [1] Deep Reinforcement Learning-Based Offloading Decision Optimization in Mobile Edge Computing
    Zhang, Hao
    Wu, Wenjun
    Wang, Chaoyi
    Li, Meng
    Yang, Ruizhe
    2019 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2019,
  • [2] Distributed Deep Learning-based Offloading for Mobile Edge Computing Networks
    Liang Huang
    Xu Feng
    Anqi Feng
    Yupin Huang
    Li Ping Qian
    Mobile Networks and Applications, 2022, 27 : 1123 - 1130
  • [3] Distributed Deep Learning-based Offloading for Mobile Edge Computing Networks
    Huang, Liang
    Feng, Xu
    Feng, Anqi
    Huang, Yupin
    Qian, Li Ping
    MOBILE NETWORKS & APPLICATIONS, 2022, 27 (03): : 1123 - 1130
  • [4] A Deep Learning Approach for Energy Efficient Computational Offloading in Mobile Edge Computing
    Ali, Zaiwar
    Jiao, Lei
    Baker, Thar
    Abbas, Ghulam
    Abbas, Ziaul Haq
    Khaf, Sadia
    IEEE ACCESS, 2019, 7 : 149623 - 149633
  • [5] Learning-Based Task Offloading for Mobile Edge Computing
    Garaali, Rim
    Chaieb, Cirine
    Ajib, Wessam
    Afif, Meriem
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 1659 - 1664
  • [6] Deep reinforcement learning-based dynamical task offloading for mobile edge computing
    Xie, Bo
    Cui, Haixia
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01):
  • [7] Task Offloading Optimization in Mobile Edge Computing based on Deep Reinforcement Learning
    Silva, Carlos
    Magaia, Naercio
    Grilo, Antonio
    PROCEEDINGS OF THE INT'L ACM CONFERENCE ON MODELING, ANALYSIS AND SIMULATION OF WIRELESS AND MOBILE SYSTEMS, MSWIM 2023, 2023, : 109 - 118
  • [8] Deep learning-based computation offloading with energy and performance optimization
    Yongsheng Gong
    Congmin Lv
    Suzhi Cao
    Lei Yan
    Houpeng Wang
    EURASIP Journal on Wireless Communications and Networking, 2020
  • [9] Deep learning-based computation offloading with energy and performance optimization
    Gong, Yongsheng
    Lv, Congmin
    Cao, Suzhi
    Yan, Lei
    Wang, Houpeng
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2020, 2020 (01)
  • [10] Deep Learning-Based Dynamic Computation Task Offloading for Mobile Edge Computing Networks
    Yang, Shicheng
    Lee, Gongwei
    Huang, Liang
    SENSORS, 2022, 22 (11)