共 11 条
- [1] Gwon H, Kim J K, Jian B, Et al., Partially-recrystallized, Nb-alloyed TWIP steels with a superior strength-ductility balance, Materials Science & Engineering: A, 711, pp. 130-139, (2018)
- [2] Tao Jia, Wu Jiefeng, Liu Zhihong, Et al., Nb/Nb55Ti welding process test at the joints of tubes and flanges in superconducting cavities, Transactions of the China Welding Institution, 42, 3, pp. 77-84, (2021)
- [3] Wang H H, Meng L, Luo Q, Et al., Superior cryogenic toughness of high-Mn austenitic steel by welding thermal cycles: The role of grain boundary evolution, Materials Science & Engineering:A, 788, (2020)
- [4] Liu W, Lu F, Yang R, Et al., Gleeble simulation of the HAZ in Inconel 617 welding[J], Journal of Materials Processing Technology, 225, pp. 221-228, (2015)
- [5] Wang J, Shen Y F, Xue W Y, Et al., The significant impact of introducing nanosize precipitates and decreased effective grain size on retention of high toughness of simulated heat affected zone (HAZ), Materials Science & Engineering: A, 803, (2021)
- [6] Liu Longlong, Investigation on preparing process and mechanical property of Fe-Mn-Cu-C TWIP steel plate, (2014)
- [7] De Cooman B C, Estrin Y, Kim S K., Twinning-induced plasticity (TWIP) steels[J], Acta Materialia, 142, pp. 283-362, (2018)
- [8] Chen J, Dong F, Jiang H, Et al., Influence of final rolling temperature on microstructure and mechanical properties in a hot-rolled TWIP steel for cryogenic application, Materials Science & Engineering: A, 724, pp. 330-334, (2018)
- [9] Yang J, Dong H, Xia Y, Et al., Carbide precipitates and mechanical properties of medium Mn steel joint with metal inert gas welding[J], Journal of Materials Science & Technology, 75, pp. 48-58, (2021)
- [10] Garcia-Garcia V, Mejia I, Reyes-Calderon F., Experimental and FEM study of Ti-containing TWIP steel weldability[J], Journal of Materials Processing Technology, 261, pp. 107-122, (2018)