A Novel Fitting Method of Electrochemical Impedance Spectroscopy for Lithium-Ion Batteries Based on Random Mutation Differential Evolution Algorithm

被引:0
|
作者
Zhang L. [1 ]
Wang X. [2 ]
Dai H. [1 ,3 ]
Wei X. [1 ,2 ]
机构
[1] School of Automotive Studies, Tongji University
[2] Clean Energy Automotive Engineering Center, Tongji University
[3] Department of Control Science and Engineering, Tongji University
来源
关键词
Differential evolution algorithm; Electrochemical impedance spectroscopy; Genetic algorithm; Lithium-ion battery; Parameter identification; Particle swarm optimization algorithm;
D O I
10.4271/14-11-02-0018
中图分类号
学科分类号
摘要
Electrochemical impedance spectroscopy (EIS) is widely used to diagnose the state of health (SOH) of lithium-ion batteries. One of the essential steps for the diagnosis is to analyze EIS with an equivalent circuit model (ECM) to understand the changes of the internal physical and chemical processes. Due to numerous equivalent circuit elements in the ECM, existing parameter identification methods often fail to meet the requirements in terms of identification accuracy or convergence speed. Therefore, this article proposes a novel impedance model parameter identification method based on the random mutation differential evolution (RMDE) algorithm. Compared with methods such as nonlinear least squares, it does not depend on the initial values of the parameters. The method is compared with chaos particle swarm optimization (CPSO) algorithm and genetic algorithm (GA), showing advantages in many aspects. The method has a convergence speed much faster than CPSO; the fitting accuracy of RMDE is more than 10 times that of CPSO and GA; the consistency of the parameter identification results of RMDE is better than the other algorithms. It is expected to complete the EIS fitting in a powerful local computing unit or cloud server, thereby facilitating the battery SOH diagnosis. ©
引用
收藏
相关论文
共 50 条
  • [1] New Analysis of Electrochemical Impedance Spectroscopy for Lithium-ion Batteries
    Osaka, Tetsuya
    Nara, Hiroki
    Mukoyama, Daikichi
    Yokoshima, Tokihiko
    JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 2013, 4 (04) : 157 - 162
  • [2] Electrochemical impedance spectroscopy based estimation of the state of charge of lithium-ion batteries
    Westerhoff, U.
    Kroker, T.
    Kurbach, K.
    Kurrat, M.
    JOURNAL OF ENERGY STORAGE, 2016, 8 : 244 - 256
  • [3] Electrochemical Impedance Spectroscopy Based on the State of Health Estimation for Lithium-Ion Batteries
    Li, Dezhi
    Yang, Dongfang
    Li, Liwei
    Wang, Licheng
    Wang, Kai
    ENERGIES, 2022, 15 (18)
  • [4] Empirical Modeling of Lithium-ion Batteries Based on Electrochemical Impedance Spectroscopy Tests
    Samadani, Ehsan
    Farhad, Siamak
    Scott, William
    Mastali, Mehrdad
    Gimenez, Leonardo E.
    Fowler, Michael
    Fraser, Roydon A.
    ELECTROCHIMICA ACTA, 2015, 160 : 169 - 177
  • [5] Analysis of Lithium-ion Batteries through Electrochemical Impedance Spectroscopy Modeling
    Teki, Vamsee Krishna
    Kasi, Jahnavi
    Chidurala, Saiprakash
    Priyadarshini, Subhashree
    Joga, S. Ramana Kumar
    Maharana, Manoj Kumar
    Panigrahi, Chinmoy Kumar
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (06)
  • [6] Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries
    Choi, Woosung
    Shin, Heon-Cheol
    Kim, Ji Man
    Choi, Jae-Young
    Yoon, Won-Sub
    JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 2020, 11 (01) : 1 - 13
  • [7] Electrochemical impedance spectroscopy correlation with degradation of commercial lithium-ion batteries
    Braatz, PO
    Lim, KC
    Lackner, AM
    Smith, WH
    Margerum, JD
    Lim, HS
    PROCEEDINGS OF THE SYMPOSIUM ON BATTERIES FOR PORTABLE APPLICATIONS AND ELECTRIC VEHICLES, 1997, 97 (18): : 479 - 487
  • [8] Novel Parameter Identification Method for Lithium-Ion Batteries Based on Curve Fitting
    Lukic, Milos
    Giangrande, Paolo
    Klumpner, Christian
    Galea, Michael
    2020 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2020,
  • [9] Fast electrochemical impedance spectroscopy of lithium-ion batteries based on the large wave excitation
    Wang, Lujun
    Song, Ziang
    Zhu, Lijun
    Jiang, Jiuchun
    ISCIENCE, 2023, 26 (04)
  • [10] A Soft Clustering Method for the Large-Scale Retired Lithium-Ion Batteries Based on Electrochemical Impedance Spectroscopy
    Lai X.
    Chen Q.
    Deng C.
    Han X.
    Zheng Y.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2022, 37 (23): : 6054 - 6064