NORMALIZED SOLUTIONS FOR THE GENERAL KIRCHHOFF TYPE EQUATIONS

被引:0
|
作者
刘文民 [1 ]
钟学秀 [2 ]
周锦芳 [1 ]
机构
[1] School of Mathematical Sciences,South China Normal University
[2] South China Research Center for Applied Mathematics and Interdisciplinary Studies &School of Mathematical Sciences,South China Normal
关键词
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
In the present paper,we prove the existence,non-existence and multiplicity of positive normalized solutions(λc,uc)∈R × H1(RN) to the general Kirchhoff problem ■ satisfying the normalization constraint■,where M ∈C([0,∞)) is a given function satisfying some suitable assumptions.Our argument is not by the classical variational method,but by a global branch approach developed by Jeanjean et al.[J Math Pures Appl,2024,183:44-75] and a direct correspondence,so we can handle in a unified way the nonlinearities g(s),which are either mass subcritical,mass critical or mass supercritical.
引用
收藏
页码:1886 / 1902
页数:17
相关论文
共 50 条
  • [1] Normalized solutions for the general Kirchhoff type equations
    Liu, Wenmin
    Zhong, Xuexiu
    Zhou, Jinfang
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (05) : 1886 - 1902
  • [2] Existence and concentration behavior of normalized solutions for critical Kirchhoff type equations with general nonlinearities
    Lu, Shuyao
    Mao, Anmin
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (04):
  • [3] NORMALIZED GROUND STATES FOR KIRCHHOFF TYPE EQUATIONS WITH GENERAL NONLINEARITIES
    Hu, Jing
    Sun, Jijiang
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2024, 29 (1-2) : 111 - 152
  • [4] Normalized solutions of Kirchhoff equations with Hartree-type nonlinearity
    Yuan, Shuai
    Gao, Yuning
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2023, 31 (01): : 271 - 294
  • [5] Concentration of Normalized Solutions for Mass Supercritical Kirchhoff Type Equations
    Ni, Yangyu
    Sun, Jijiang
    JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (01)
  • [6] Normalized solutions for nonlinear Kirchhoff type equations in high dimensions
    Kong, Lingzheng
    Chen, Haibo
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (04): : 1282 - 1295
  • [7] Normalized solutions for Kirchhoff-Choquard type equations with different potentials
    Liu, Min
    Sun, Rui
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (04)
  • [8] MULTIPLE NORMALIZED SOLUTIONS FOR CHOQUARD EQUATIONS INVOLVING KIRCHHOFF TYPE PERTURBATION
    Liu, Zeng
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2019, 54 (01) : 297 - 319
  • [9] Normalized Solutions for Kirchhoff-Type Equations with Different Kinds of Potentials
    Liu, Min
    Sun, Rui
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2024, 59 (06): : 442 - 454
  • [10] Normalized solutions to the fractional Kirchhoff equations with a perturbation
    Liu, Lintao
    Chen, Haibo
    Yang, Jie
    APPLICABLE ANALYSIS, 2023, 102 (04) : 1229 - 1249