LéVY AREA ANALYSIS AND PARAMETER ESTIMATION FOR FOU PROCESSES VIA NON-GEOMETRIC ROUGH PATH THEORY

被引:0
|
作者
钱忠民 [1 ]
徐兴成 [2 ,3 ]
机构
[1] Mathematical Institute,University of Oxford
[2] Shanghai Artificial Intelligence Laboratory
[3] School of Mathematical Sciences,Peking
关键词
D O I
暂无
中图分类号
O211.6 [随机过程];
学科分类号
摘要
This paper addresses the estimation problem of an unknown drift parameter matrix for a fractional Ornstein-Uhlenbeck process in a multi-dimensional setting.To tackle this problem,we propose a novel approach based on rough path theory that allows us to construct pathwise rough path estimators from both continuous and discrete observations of a single path.Our approach is particularly suitable for high-frequency data.To formulate the parameter estimators,we introduce a theory of pathwise Ito integrals with respect to fractional Brownian motion.By establishing the regularity of fractional Ornstein-Uhlenbeck processes and analyzing the long-term behavior of the associated Levy area processes,we demonstrate that our estimators are strongly consistent and pathwise stable.Our findings offer a new perspective on estimating the drift parameter matrix for fractional OrnsteinUhlenbeck processes in multi-dimensional settings,and may have practical implications for fields including finance,economics,and engineering.
引用
收藏
页码:1609 / 1638
页数:30
相关论文
共 2 条
  • [1] Lévy area analysis and parameter estimation for fOU processes via non-geometric rough path theory
    Qian, Zhongmin
    Xu, Xingcheng
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (05) : 1609 - 1638
  • [2] Parameter Estimation for Geometric Lévy Processes with Constant Volatility
    Chhetri S.
    Long H.
    Ball C.
    Annals of Data Science, 2025, 12 (1) : 63 - 93