基于YOLOv7改进的夜间樱桃检测方法:YOLOv7-Cherry

被引:0
|
作者
盖荣丽 [1 ]
孔祥宙 [1 ]
秦山 [2 ]
魏凯 [1 ]
机构
[1] 大连大学信息工程学院
[2] 大连市现代农业生产发展服务中心
关键词
图像融合; YOLOv7; 目标检测; 小目标; 夜间樱桃识别;
D O I
暂无
中图分类号
S225 [收获机械]; TP391.41 [];
学科分类号
080203 ;
摘要
针对樱桃检测算法无法对夜晚环境下的樱桃进行成熟度识别的问题,提出一种改进的YOLOv7算法:YOLOv7-Cherry。使用一种将夜间樱桃图像和白天相同位置的樱桃图像相融合的图像预处理方法,保留夜间樱桃图像高空间分辨信息的同时加强其光谱分辨率。在YOLOv7-Cherry中,将CBAM注意力机制插入到骨干网络中,利用注意力机制强化神经网络的表征能力,强调重要特征,忽略次要特征,加强对樱桃目标特征的提取;为了加强目标检测算法对图像中小樱桃的识别,增加小目标检测层;改进了原始网络的初始检测框大小;为了减少遮挡对樱桃目标造成的损失,对检测框使用了Soft-NMS方法进行冗余去除。实验结果表明,YOLOv7-Cherry可以有效地识别出夜晚环境下的成熟樱桃和未成熟樱桃,与YOLOv3、Faster-RCNN、YOLOv4、YOLOv5和原YOLOv7相比,YOLOv7-Cherry的mAP提高了26.88、25.05、22.51、17.11和7.66个百分点,其中,识别精度、召回率、mAP和F1为93.9%、94.7%、97.4%、94.3%。
引用
收藏
页码:315 / 323
页数:9
相关论文
共 18 条
  • [1] 基于小波变换的多传感器遥感图像融合算法研究.[D].王欢.湘潭大学.2009, S2
  • [2] Detection of Camellia oleifera Fruit in Complex Scenes by Using YOLOv7 and Data Augmentation
    Wu, Delin
    Jiang, Shan
    Zhao, Enlong
    Liu, Yilin
    Zhu, Hongchun
    Wang, Weiwei
    Wang, Rongyan
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (22):
  • [3] A Real-Time Detection Algorithm for Sweet Cherry Fruit Maturity Based on YOLOX in the Natural Environment
    Li, Zhiyong
    Jiang, Xueqin
    Shuai, Luyu
    Zhang, Boda
    Yang, Yiyu
    Mu, Jiong
    [J]. AGRONOMY-BASEL, 2022, 12 (10):
  • [4] Research on tomato detection in natural environment based on RC-YOLOv4.[J].Zheng Taixiong;Jiang Mingzhe;Li Yongfu;Feng Mingchi.Computers and Electronics in Agriculture.2022,
  • [5] Plant Disease Recognition Model Based on Improved YOLOv5
    Chen, Zhaoyi
    Wu, Ruhui
    Lin, Yiyan
    Li, Chuyu
    Chen, Siyu
    Yuan, Zhineng
    Chen, Shiwei
    Zou, Xiangjun
    [J]. AGRONOMY-BASEL, 2022, 12 (02):
  • [6] A detection algorithm for cherry fruits based on the improved YOLO-v4 model.[J].Rongli Gai;Na Chen;Hai Yuan.Neural Computing and Applications.2021, 19
  • [7] A Real-Time Apple Targets Detection Method for Picking Robot Based on Improved YOLOv5
    Yan, Bin
    Fan, Pan
    Lei, Xiaoyan
    Liu, Zhijie
    Yang, Fuzeng
    [J]. REMOTE SENSING, 2021, 13 (09)
  • [8] Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression.[J].Zhaohui Zheng;Ping Wang;Wei Liu;Jinze Li;Rongguang Ye;Dongwei Ren.Proceedings of the AAAI Conference on Artificial Intelligence.2020, 07
  • [9] Deep learning in agriculture: A survey.[J].Andreas Kamilaris;Francesc X. Prenafeta-Boldú.Computers and Electronics in Agriculture.2018,
  • [10] Nonlinear IHS: A Promising Method for Pan-Sharpening
    Ghahremani, Morteza
    Ghassemian, Hassan
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (11) : 1606 - 1610