Reconstruction-Based Anomaly Detection in Wind Turbine Operation Time Series Using Generative Models

被引:0
|
作者
Abanda, Amaia [1 ]
Pujana, Ainhoa [1 ]
Del Ser, Javier [1 ,2 ]
机构
[1] TECNALIA, Basque Res & Technol Alliance BRTA, Derio 48160, Spain
[2] Univ Basque Country UPV EHU, Dept Commun Engn, Bilbao 48013, Spain
关键词
Time series; Anomaly detection; Generative models; Reconstruction; Wind Turbine; FAULT-DETECTION;
D O I
10.1007/978-3-031-62799-6_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised time series anomaly detection is a common tasks in many real world problems, in which the normal/anomaly labels are extremely unbalanced. In this work, we propose to use three generative models (namely, a basic autoencoder, a transformer autoencoder and a diffusion model) for a reconstruction-based anomaly detection pipeline applied to failure detection in wind turbine operation time series. Our experiments show that the transformer autoencoder yields the most accurate reconstructions of the original time series, whereas the diffusion model is not able to obtain good reconstructions. The reconstruction error, which is used as an anomaly score, seems to follow different distributions for the anomalies and for the normal data in 2 of the 3 models, which is confirmed by our quantitative evaluation. The transformer autoencoder is the best performing generative model, achieving a AUC score of 0.98 in the detection of the anomalies. However, the same result is obtained by standard (i.e. non-generative) outlier detection algorithms, exposing that although the anomalies in this problem are sequence anomalies - with a temporal nature -, they can be effectively modeled and detected as point outliers.
引用
收藏
页码:194 / 203
页数:10
相关论文
共 50 条
  • [1] Reconstruction-based anomaly detection for multivariate time series using contrastive generative adversarial networks
    Miao, Jiawei
    Tao, Haicheng
    Xie, Haoran
    Sun, Jianshan
    Cao, Jie
    INFORMATION PROCESSING & MANAGEMENT, 2024, 61 (01)
  • [2] Time Series Anomaly Detection with Reconstruction-Based State-Space Models
    Wang, Fan
    Wang, Keli
    Yao, Boyu
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT III, 2023, 14256 : 74 - 86
  • [3] RGAnomaly: Data reconstruction-based generative adversarial networks for multivariate time series anomaly detection in the Internet of Things
    Qian, Cheng
    Tang, Wenzhong
    Wang, Yanyang
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2025, 167
  • [4] Time Series Anomaly Detection Based on Score Generative Model
    Zhou H.
    Yu K.
    Wu X.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2024, 47 (02): : 51 - 57
  • [5] Wind Turbine Anomaly Detection Using Normal Behavior Models based on SCADA Data
    Sun, Peng
    Li, Jian
    Yan, Yonglong
    Lei, Xiao
    Zhang, Xiaomeng
    2014 INTERNATIONAL CONFERENCE ON HIGH VOLTAGE ENGINEERING AND APPLICATION (ICHVE), 2014,
  • [6] Generative Anomaly Detection in Multivariate Time Series
    Hoh, M.
    Schöttl, A.
    Schaub, H.
    Leuze, N.
    Automation, Robotics and Communications for Industry 4.0/5.0, 2023, 2023 : 171 - 174
  • [7] Time Series Anomaly Detection using Diffusion-based Models
    Pintilie, Ioana
    Manolache, Andrei
    Brad, Florin
    2023 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW 2023, 2023, : 570 - 578
  • [8] Fixing Bias in Reconstruction-based Anomaly Detection with Lipschitz Discriminators
    Alexander Tong
    Guy Wolf
    Smita Krishnaswamy
    Journal of Signal Processing Systems, 2022, 94 : 229 - 243
  • [9] TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks
    Geiger, Alexander
    Liu, Dongyu
    Alnegheimish, Sarah
    Cuesta-Infante, Alfredo
    Veeramachaneni, Kalyan
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 33 - 43
  • [10] SCADA-based wind turbine anomaly detection using Gaussian process models for wind turbine condition monitoring purposes
    Pandit, Ravi Kumar
    Infield, David
    IET RENEWABLE POWER GENERATION, 2018, 12 (11) : 1249 - 1255