Stability relations for Hilbert space operators and a problem of Kaplansky

被引:0
|
作者
Marcoux, Laurent W. [1 ]
Radjavi, Heydar [1 ]
Troscheit, Sascha [2 ]
Zhang, Yuanhang [3 ]
机构
[1] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
[2] Uppsala Univ, Dept Math, Box 430, S-75106 Uppsala, Sweden
[3] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
关键词
Kaplansky's Problem; Similarity; Direct sums; Multiplicity; Primitive operator roots; SIMILARITY;
D O I
10.1007/s00209-024-03590-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In his monograph on Infinite Abelian Groups, I. Kaplansky raised three "test problems" concerning their structure and multiplicity. As noted by Azoff, these problems make sense for any category admitting a direct sum operation. Here, we are interested in the operator theoretic version of Kaplansky's second problem which asks: if A and B are operators on an infinite-dimensional, separable Hilbert space and A circle plus A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A \oplus A$$\end{document} is equivalent to B circle plus B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B \oplus B$$\end{document} in some (precise) sense, is A equivalent to B? We examine this problem under a strengthening of the hypothesis, where a "primitive" square root J2(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_2(A)$$\end{document} of A circle plus A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\oplus A$$\end{document} is assumed to be equivalent to the corresponding square root J2(B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_2(B)$$\end{document} of B circle plus B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B \oplus B$$\end{document}. When "equivalence" refers to similarity of operators and A is a compact operator, we deduce from this stronger hypothesis that A and B are similar. We exhibit a counterexample (due to J. Bell) of this phenomenon in the setting of unital rings. Also, we exhibit an uncountable family {U alpha}alpha is an element of Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ U_\alpha \}_{\alpha \in \Omega }$$\end{document} of unitary operators, no two of which are unitarily equivalent, such that each U alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_\alpha $$\end{document} is unitarily equivalent to Jn(U alpha)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_n(U_\alpha )$$\end{document}, a "primitive" nth\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n<^>{th}$$\end{document} root of U alpha circle plus U alpha circle plus & ctdot;circle plus U alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_\alpha \oplus U_\alpha \oplus \cdots \oplus U_\alpha $$\end{document}.
引用
收藏
页数:46
相关论文
共 50 条