On absorption's formula definable semigroups of complete theories

被引:0
|
作者
Bekenov, Mahsut [1 ]
Kassatova, Aida [2 ]
Nurakunov, Anvar [3 ]
机构
[1] LN Gumilev Eurasian Natl Univ, Munaitpassov Str 5, Astana 010008, Kazakhstan
[2] Karaganda Med Univ, 40 Gogol Str, Karaganda 100024, Kazakhstan
[3] NAS KR, Inst Math, Chu Prosp 265a, Bishkek 720071, Kyrgyzstan
关键词
Complete theory; Semigroup; Axiomatizable class; Direct product; Ultraproduct; Quasivariety;
D O I
10.1007/s00153-024-00937-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
On the set of all first-order complete theories T(sigma)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T(\sigma )$$\end{document} of a language sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} we define a binary operation {<middle dot>}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\cdot \}$$\end{document} by the rule: T<middle dot>S=Th({AxB divided by A & models;TandB & models;S})\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T\cdot S= {{\,\textrm{Th}\,}}(\{A\times B\mid A\models T \,\,\text {and}\,\, B\models S\})$$\end{document} for any complete theories T,S is an element of T(sigma)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T, S\in T(\sigma )$$\end{document}. The structure < T(sigma);<middle dot>>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle T(\sigma );\cdot \rangle $$\end{document} forms a commutative semigroup. A subsemigroup S of < T(sigma);<middle dot>>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle T(\sigma );\cdot \rangle $$\end{document} is called an absorption's formula definable semigroup if there is a complete theory T is an element of T(sigma)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T\in T(\sigma )$$\end{document} such that S=<{X is an element of T(sigma)divided by X<middle dot>T=T};<middle dot>>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S=\langle \{X\in T(\sigma )\mid X\cdot T=T\};\cdot \rangle $$\end{document}. In this event we say that a theory TabsorbsS. In the article we show that for any absorption's formula definable semigroup S the class Mod(S)={A is an element of Mod(sigma)divided by A & models;T0for someT0 is an element of S}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Mod}\,}}(S)=\{A\in {{\,\textrm{Mod}\,}}(\sigma )\mid A\models T_0\,\,\text {for some}\,\, T_0\in S\}$$\end{document} is axiomatizable, and there is an idempotent element T is an element of S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T\in S$$\end{document} that absorbs S. Moreover, Mod(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Mod}\,}}(S)$$\end{document} is finitely axiomatizable provided T is finitely axiomatizable. We also prove that Mod(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Mod}\,}}(S)$$\end{document} is a quasivariety (variety) provided T is an universal (a positive universal) theory. Some examples are provided.
引用
收藏
页码:107 / 116
页数:10
相关论文
共 50 条
  • [1] Euler's exponential formula for semigroups
    Cachia, V
    SEMIGROUP FORUM, 2004, 68 (01) : 1 - 24
  • [2] Trotter's formula for transition semigroups
    Tessitore, G
    Zabczyk, J
    SEMIGROUP FORUM, 2001, 63 (02) : 114 - 126
  • [3] Trotter’s formula for transition semigroups
    G. Tessitore
    J. Zabczyk
    Semigroup Forum, 2001, 63 : 114 - 126
  • [4] Euler’s Exponential Formula for Semigroups
    Vincent Cachia
    Semigroup Forum, 2004, 68 : 1 - 24
  • [5] Action of endomorphism semigroups on definable sets
    Mashevitzky, G.
    Plotkin, B.
    Plotkin, E.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2018, 28 (08) : 1585 - 1612
  • [6] ALGEBRAS FOR DEFINABLE FAMILIES OF THEORIES
    Markhabatov, N. D.
    Sudoplatov, S., V
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2019, 16 : 600 - 608
  • [7] Stably definable classes of theories
    Palyutin E.A.
    Algebra and Logic, 2005, 44 (5) : 326 - 335
  • [8] Generalizations of Alladi's formula for arithmetical semigroups
    Duan, Lian
    Ma, Ning
    Yi, Shaoyun
    RAMANUJAN JOURNAL, 2022, 58 (04): : 1285 - 1319
  • [9] Generalizations of Alladi’s formula for arithmetical semigroups
    Lian Duan
    Ning Ma
    Shaoyun Yi
    The Ramanujan Journal, 2022, 58 : 1285 - 1319
  • [10] Godel's second incompleteness theorem for Σn-definable theories
    Chao, Conden
    Seraji, Payam
    LOGIC JOURNAL OF THE IGPL, 2018, 26 (02) : 255 - 257