BFFN: A novel balanced feature fusion network for fair facial expression recognition

被引:0
|
作者
Li, Hao [1 ,3 ]
Luo, Yiqin [2 ,3 ]
Gu, Tianlong [1 ,3 ]
Chang, Liang [4 ]
机构
[1] Jinan Univ, Coll Cyber Secur, Guangzhou 510632, Peoples R China
[2] Jinan Univ, Coll Informat Sci & Technol, Guangzhou 510632, Peoples R China
[3] Jinan Univ, Engn Res Ctr Trustworthy AI, Minist Educ, Guangzhou 510632, Peoples R China
[4] Guilin Univ Elect Technol, Guangxi Key Lab Trusted Software, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
Face expression recognition; Fairness; Action units; Weighted feature fusion; REPRESENTATION; WILD;
D O I
10.1016/j.engappai.2024.109277
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Facial expression recognition (FER) technology has become increasingly mature and applicable in recent years. However, it still suffers from the bias of expression class, which can lead to unfair decisions for certain expression classes in applications. This study aims to mitigate expression class bias through both pre-processing and in-processing approaches. First, we analyze the output of existing models and demonstrate the existence of obvious class bias, particularly for underrepresented expressions. Second, we develop a class-balanced dataset constructed through data generation, mitigating unfairness at the data level. Then, we propose the Balanced Feature Fusion Network (BFFN), a class fairness-enhancing network. The BFFN mitigates the class bias by adding facial action units (AU) to enrich expression-related features and allocating weights in the AU feature fusion process to improve the extraction ability of underrepresented expression features. Finally, extensive experiments on datasets (RAF-DB and AffectNet) provide evidence that our BFFN outperforms existing FER models, improving the fairness by at least 16%.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Hierarchical attention network with progressive feature fusion for facial expression recognition
    Tao, Huanjie
    Duan, Qianyue
    NEURAL NETWORKS, 2024, 170 : 337 - 348
  • [2] Multi-feature fusion network for facial expression recognition in the wild
    Gong, Weijun
    Wang, Chaoqing
    Jia, Jinlu
    Qian, Yurong
    Fan, Yingying
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (06) : 4999 - 5011
  • [3] Multi-level Feature Fusion Facial Expression Recognition Network
    Hu, Qian
    Wu, Chengdong
    Chi, Jianning
    Yu, Xiaosheng
    Wang, Huan
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 5267 - 5272
  • [4] Fusion of Feature Sets for Facial Expression Recognition
    Navran, Mina
    Charkari, Nasrollah Moghadam
    2014 7TH INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATIONS (IST), 2014, : 507 - 512
  • [5] Facial expression recognition Based on Feature Fusion
    Jian, Chen
    FIFTH INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION, 2020, 11526
  • [6] Facial Expression Recognition Based on Local Feature Fusion of Convolutional Neural Network
    Yao Lisha
    Xu Guoming
    Zhao Feng
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (04)
  • [7] Occlusion facial expression recognition based on feature fusion residual attention network
    Chen, Yuekun
    Liu, Shuaishi
    Zhao, Dongxu
    Ji, Wenkai
    FRONTIERS IN NEUROROBOTICS, 2023, 17
  • [8] Facial Expression Recognition in Video with Multiple Feature Fusion
    Chen, Junkai
    Chen, Zenghai
    Chi, Zheru
    Fu, Hong
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2018, 9 (01) : 38 - 50
  • [9] Feature Fusion of HOG and WLD for Facial Expression Recognition
    Wang, Xiaohua
    Jin, Chao
    Liu, Wei
    Hu, Min
    Xu, Liangfeng
    Ren, Fuji
    2013 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION (SII), 2013, : 227 - 232
  • [10] Facial expression recognition using feature level fusion
    Jain, Vanita
    Lamba, Puneet Singh
    Singh, Bhanu
    Namboothiri, Narayanan
    Dhall, Shafali
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2019, 22 (02): : 337 - 350