Visible-infrared person re-identification with complementary feature fusion and identity consistency learning

被引:0
|
作者
Wang, Yiming [1 ]
Chen, Xiaolong [1 ]
Chai, Yi [1 ]
Xu, Kaixiong [1 ]
Jiang, Yutao [1 ]
Liu, Bowen [2 ]
机构
[1] Chongqing Univ, Sch Automat, Chongqing 400044, Peoples R China
[2] Chongqing Univ Sci & Technol, Sch Intelligent Technol & Engn, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
Cross-modality; Person re-identification; Feature fusion; Collaborative adversarial mechanism; PREDICTION; NETWORK;
D O I
10.1007/s13042-024-02282-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The dual-mode 24/7 monitoring systems continuously obtain visible and infrared images in a real scene. However, differences such as color and texture between these cross-modality images pose challenges for visible-infrared person re-identification (ReID). Currently, the general method is modality-shared feature learning or modal-specific information compensation based on style transfer, but the modality differences often result in the inevitable loss of valuable feature information in the training process. To address this issue, A complementary feature fusion and identity consistency learning (CFF-ICL) method is proposed. On the one hand, the multiple feature fusion mechanism based on cross attention is used to promote the features extracted by the two groups of networks in the same modality image to show a more obvious complementary relationship to improve the comprehensiveness of feature information. On the other hand, the designed collaborative adversarial mechanism between dual discriminators and feature extraction network is designed to remove the modality differences, and then construct the identity consistency between visible and infrared images. Experimental results by testing on SYSU-MM01 and RegDB datasets verify the method's effectiveness and superiority.
引用
收藏
页码:703 / 719
页数:17
相关论文
共 50 条
  • [1] Identity Feature Disentanglement for Visible-Infrared Person Re-Identification
    Chen, Xiumei
    Zheng, Xiangtao
    Lu, Xiaoqiang
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2023, 19 (06)
  • [2] Feature Fusion and Center Aggregation for Visible-Infrared Person Re-Identification
    Wang, Xianju
    Chen, Cuiqun
    Zhu, Yong
    Chen, Shuguang
    IEEE ACCESS, 2022, 10 : 30949 - 30958
  • [3] Stronger Heterogeneous Feature Learning for Visible-Infrared Person Re-Identification
    Hao Wang
    Xiaojun Bi
    Changdong Yu
    Neural Processing Letters, 56
  • [4] Stronger Heterogeneous Feature Learning for Visible-Infrared Person Re-Identification
    Wang, Hao
    Bi, Xiaojun
    Yu, Changdong
    NEURAL PROCESSING LETTERS, 2024, 56 (02)
  • [5] Visible-Infrared Person Re-Identification Via Feature Constrained Learning
    Zhang Jing
    Chen Guangfeng
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (12)
  • [6] Progressive Discriminative Feature Learning for Visible-Infrared Person Re-Identification
    Zhou, Feng
    Cheng, Zhuxuan
    Yang, Haitao
    Song, Yifeng
    Fu, Shengpeng
    ELECTRONICS, 2024, 13 (14)
  • [7] Dual-granularity feature fusion in visible-infrared person re-identification
    Cai, Shuang
    Yang, Shanmin
    Hu, Jing
    Wu, Xi
    IET IMAGE PROCESSING, 2024, 18 (04) : 972 - 980
  • [8] Dual-Semantic Consistency Learning for Visible-Infrared Person Re-Identification
    Zhang, Yiyuan
    Kang, Yuhao
    Zhao, Sanyuan
    Shen, Jianbing
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 1554 - 1565
  • [9] Cross-modality consistency learning for visible-infrared person re-identification
    Shao, Jie
    Tang, Lei
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (06)
  • [10] Visible-infrared person re-identification model based on feature consistency and modal indistinguishability
    Sun, Jia
    Li, Yanfeng
    Chen, Houjin
    Peng, Yahui
    Zhu, Jinlei
    MACHINE VISION AND APPLICATIONS, 2023, 34 (01)