Shrinkage estimation of higher-order Bochner integrals

被引:0
|
作者
Utpala, Saiteja [1 ]
Sriperumbudur, Bharath k. [2 ]
机构
[1] Wadhwani AI, New Delhi, India
[2] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
关键词
Bernstein's inequality; Bochner integral; completely degenerate; James-Stein estimator; shrinkage estimation; SURE; U-statistics; COVARIANCE-MATRIX;
D O I
10.3150/23-BEJ1692
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider shrinkage estimation of higher-order Hilbert space-valued Bochner integrals in a non-parametric setting. We propose estimators that shrink the U-statistic estimator of the Bochner integral towards a pre-specified target element in the Hilbert space. Depending on the degeneracy of the kernel of the U-statistic, we construct consistent shrinkage estimators and develop oracle inequalities comparing the risks of the U-statistic estimator and its shrinkage version. Surprisingly, we show that the shrinkage estimator designed by assuming complete degeneracy of the kernel of the U-statistic is a consistent estimator even when the kernel is not completely degenerate. This work subsumes and improves upon Muandet et al. (J. Mach. Learn. Res. 17 (2016) 48) and Thou, Chen and Huang (J. Multivariate Anal. 169 (2019) 166-178), which only handle mean element and covariance operator estimation in a reproducing kernel Hilbert space. We also specialize our results to normal mean estimation and show that for d >= 3, the proposed estimator strictly improves upon the sample mean in terms of the mean squared error.
引用
收藏
页码:2721 / 2746
页数:26
相关论文
共 50 条
  • [1] Higher-order asymptotic theory of shrinkage estimation for general statistical models
    Shiraishi, Hiroshi
    Taniguchi, Masanobu
    Yamashita, Takashi
    JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 166 : 198 - 211
  • [2] LINE INTEGRALS OF HIGHER-ORDER DERIVATIVES
    HILE, GN
    YEH, RZ
    AMERICAN MATHEMATICAL MONTHLY, 1988, 95 (08): : 739 - 744
  • [3] Construction of integrals of higher-order mappings
    Maruno, Ken-ichi
    Quispel, G. Reinout W.
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2006, 75 (12)
  • [4] ON THE EVALUATION OF HIGHER-ORDER JWKB INTEGRALS
    CHAN, CK
    LU, P
    JOURNAL OF CHEMICAL PHYSICS, 1981, 74 (06): : 3625 - 3626
  • [5] A Link Between Integrals and Higher-Order Integrals of SPN Ciphers
    Li, Ruilin
    Sun, Bing
    Li, Chao
    ETRI JOURNAL, 2013, 35 (01) : 131 - 141
  • [6] THE LOWER SEMICONTINUITY OF HIGHER-ORDER MULTIPLE INTEGRALS
    ACANFORA, F
    SQUILLANTE, M
    RICERCHE DI MATEMATICA, 1981, 30 (02) : 333 - 354
  • [7] INTEGRALS OF MOTION FOR LAGRANGIANS INCLUDING HIGHER-ORDER DERIVATIVES
    CONSTANTELOS, GC
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 1974, B 21 (02): : 279 - 288
  • [8] EVALUATION OF COMPLEX HIGHER-ORDER SEMICLASSICAL PHASE INTEGRALS
    LUPPI, J
    PAJUNEN, P
    JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (04): : 1836 - 1840
  • [9] Regularity of solutions to higher-order integrals of the calculus of variations
    Sidi Ammi, Moulay Rchid
    Torres, Delfim F. M.
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2008, 39 (09) : 889 - 895
  • [10] On higher-order moment and cumulant estimation
    Chan, Lok Hang
    Chen, Kun
    Li, Chun Xue
    Wong, Chung Wang
    Yau, Chun Yip
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (04) : 747 - 771