Preparation of hard carbon-coated and metal-modified silicon anode materials for lithium-ion batteries

被引:0
|
作者
Chen, Feiyang [1 ]
Chen, Jun [1 ]
Xu, Guojun [1 ,2 ]
Jin, Chenxin [1 ,2 ]
Ma, Haoqiang [1 ]
Wen, Lijun [1 ]
Tu, Chuanbin [1 ]
Sun, Fugen [1 ]
Li, Yong [3 ]
Li, Hui [4 ]
Zhou, Lang [1 ,2 ]
Yue, Zhihao [1 ,2 ]
机构
[1] Nanchang Univ, Inst Photovolta, Nanchang 330031, Peoples R China
[2] NCU GQC Inst PV HE ES Technol, Shanghai 332020, Peoples R China
[3] Nanchang Univ, Sch Phys & Mat Sci, Nanchang 330031, Peoples R China
[4] Farasis Energy Co Ltd, Ganzhou 341000, Peoples R China
关键词
Carbon coating; Silicon anode; Lithium-ion batteries; Metal modification; COMPOSITE; PERFORMANCE; ELECTRODES; ENERGY;
D O I
10.1007/s11581-024-05870-1
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High-capacity silicon anode is one of the ideal anode materials for the next generation, but the volume expansion effect and low conductivity hinder its development. In this study, a simple and low-cost method was employed to prepare micron-sized silicon raw materials. Subsequently, a hard carbon-coated structure was combined with the metal modification method to successfully prepare hard carbon-coated silver-modified silicon particle material. Due to the hard carbon coating structure, Si/Ag@HC materials can effectively alleviate the volume expansion of silicon, and the modification of metallic silver can not only improve the conductivity of silicon, but also further enhance the ability to limit the volume expansion effect. The Si/Ag@HC maintains a specific capacity of 997.05 mAh g-1 after 200 cycles at a current density of 0.5C, and it also shows an excellent rate performance of over 600 mAh g-1 at a current density of 2C.
引用
收藏
页码:7861 / 7868
页数:8
相关论文
共 50 条
  • [1] Carbon-coated ZnO Nanocomposite Microspheres as Anode Materials for Lithium-ion Batteries
    Yingqiang Fan
    Xiujuan Chen
    Dan Xu
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2023, 38 : 490 - 495
  • [2] Carbon-coated disproportionated SiO composite as anode materials for lithium-ion batteries
    Wang, Changlong
    Feng, Xingyi
    Chen, Ronghua
    Chen, Zhonghua
    Chen, Shengzhou
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2024, 54 (05) : 951 - 962
  • [3] Carbon-coated ZnO Nanocomposite Microspheres as Anode Materials for Lithium-ion Batteries
    范影强
    陈秀娟
    XU Dan
    Journal of Wuhan University of Technology(Materials Science), 2023, 38 (03) : 490 - 495
  • [4] Carbon-coated disproportionated SiO composite as anode materials for lithium-ion batteries
    Changlong Wang
    Xingyi Feng
    Ronghua Chen
    Zhonghua Chen
    Shengzhou Chen
    Journal of Applied Electrochemistry, 2024, 54 : 951 - 962
  • [5] Carbon-coated ZnO Nanocomposite Microspheres as Anode Materials for Lithium-ion Batteries
    Fan, Yingqiang
    Chen, Xiujuan
    Xu, Dan
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2023, 38 (03): : 490 - 495
  • [6] Carbon-coated silicon/graphite oxide composites as anode materials for highly stable lithium-ion batteries
    Niu, Lujie
    Zhang, Rui
    Zhang, Qiang
    Wang, Dong
    Bi, Yanlei
    Wen, Guangwu
    Qin, Lu-Chang
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (24) : 17292 - 17302
  • [7] Carbon-coated silicon/crumpled graphene composite as anode material for lithium-ion batteries
    Huang, Haiji
    Rao, Pinhua
    Choi, Won Mook
    CURRENT APPLIED PHYSICS, 2019, 19 (12) : 1349 - 1354
  • [8] Lithium Storage in Carbon-coated Zinc Iron Oxides as Anode Materials for Lithium-Ion Batteries
    Wang, Huan-Huan
    Jin, Bo
    Li, Lin-Lin
    Lang, Xing-You
    Yang, Chun-Cheng
    Gao, Wang
    Zhu, Yong-Fu
    Wen, Zi
    Jiang, Qing
    ENERGY TECHNOLOGY, 2017, 5 (04) : 611 - 615
  • [9] Carbon-coated silicon nanotube arrays on carbon cloth as a hybrid anode for lithium-ion batteries
    Wang, Wei
    Gu, Lin
    Qian, Haolei
    Zhao, Ming
    Ding, Xi
    Peng, Xinsheng
    Sha, Jian
    Wang, Yewu
    JOURNAL OF POWER SOURCES, 2016, 307 : 410 - 415
  • [10] Carbon-coated MoO3 nanobelts as anode materials for lithium-ion batteries
    Hassan, M. F.
    Guo, Z. P.
    Chen, Z.
    Liu, H. K.
    JOURNAL OF POWER SOURCES, 2010, 195 (08) : 2372 - 2376