Bifurcation and multiplicity results for elliptic problems with subcritical nonlinearity on the boundary

被引:0
|
作者
Bandyopadhyay, Shalmali [1 ,5 ]
Chhetri, Maya [1 ]
Delgado, Briceyda B. [2 ,6 ]
Mavinga, Nsoki [3 ]
Pardo, Rosa [4 ]
机构
[1] UNC Greensboro, Greensboro, NC 27402 USA
[2] Univ Autonoma Aguascalientes, Aguascalientes, Mexico
[3] Swarthmore Coll, Swarthmore, PA USA
[4] Univ Complutense Madrid, Madrid, Spain
[5] Univ Tennessee Martin, Martin, TN USA
[6] Ctr Invest Innovac Tecnol Informac & Comunicac, INFOTEC, Aguascalientes, Mexico
关键词
Elliptic problem; Nonlinear boundary conditions; Superlinear and subcritical; Local bifurcation; Degree theory; Global bifurcation; REACTION-DIFFUSION EQUATIONS; POSITIVE SOLUTIONS; EXISTENCE; EQUILIBRIA; STABILITY;
D O I
10.1016/j.jde.2024.07.041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider an elliptic problem with nonlinear boundary condition involving nonlinearity with super- linear and subcritical growth at infinity and a bifurcation parameter as a factor. We use re-scaling method, degree theory and continuation theorem to prove that there exists a connected branch of positive solutions bifurcating from infinity when the parameter goes to zero. Moreover, if the nonlinearity satisfies additional conditions near zero, we establish a global bifurcation result, and discuss the number of positive solution(s) with respect to the parameter using bifurcation theory and degree theory. (c) 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons .org /licenses /by -nc -nd /4 .0/).
引用
收藏
页码:28 / 50
页数:23
相关论文
共 50 条