Experimental investigation and industrial application of a cascade air-source high temperature heat pump

被引:4
|
作者
Wu, Di [1 ]
Jiang, Jiatong [1 ]
Hu, Bin [1 ]
Wang, R. Z. [2 ]
Sun, Yan [1 ]
机构
[1] Shanghai Nuotong New Energy Technol Co Ltd, Shanghai 200241, Peoples R China
[2] Shanghai Jiao Tong Univ, Inst Refrigerat & Cryogen, Shanghai 200240, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金; 中国博士后科学基金;
关键词
High temperature heat pump; Cascade cycle; Air-source heat pump; Experimental investigation; Industrial application; WATER; REFRIGERANTS; R1234ZE(Z); VAPOR;
D O I
10.1016/j.renene.2024.121094
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
For industrial thermal scenarios where there is no waste heat to recycle, the Air-source High Temperature Heat Pump (ASHTHP) is the only choice to replace the traditional industrial boiler and decrease energy consumption. A cascade ASHTHP has been designed and developed to support 125 degrees C hot water, which utilizes R410A and R245fa as working mediums. It is not only theoretically simulated and experimentally investigated, but also applied in an electroplating factory in Ningbo, China to provide 120 degrees C hot water. When the ambient temperature is 20 degrees C and the output temperature is 125 degrees C, the experimental heating capacity of the unit is 121.5 kW with a COP of 1.71. During the experimental investigation, the heating capacity attenuation remains within 19.25 %. Through the comparison and verification of the experimental data, the system simulation results have high accuracy with the error controlled within 5 %. When used in the electroplating factory to provide hot water at 120 degrees C, the cascade ASHTHP units can provide a heating capacity of 480 kW with a COP of 1.8 at the ambient temperature of around 25 degrees C, which results in annual savings of approximately $123,200 and a payback period of 1.65 years.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Experimental investigation of air-source heat pump for cold regions
    Ma, GY
    Chai, QH
    Jiang, Y
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2003, 26 (01): : 12 - 18
  • [2] Experimental and theoretical investigation on the energetic and economic performance of low-temperature cascade air-source heat pump considering the effects of cascade heat exchanger
    Xu, Yingjie
    Zhang, Jiahe
    Shen, Xi
    Han, Xiaohong
    Chen, Hongyu
    Xu, Xiaoxiao
    APPLIED THERMAL ENGINEERING, 2024, 236
  • [3] Application Analysis of Air-source Heat Pump Unit
    Shao, Zongyi
    Wang, Yufeng
    Fang, Rui
    6TH INTERNATIONAL SYMPOSIUM ON HEATING, VENTILATING AND AIR CONDITIONING, VOLS I-III, PROCEEDINGS, 2009, : 661 - 664
  • [4] Investigation of air-source heat pump using heat pipes as heat radiator
    Xu, Shuxue
    Ding, Ruochen
    Niu, Jianhui
    Ma, Guoyuan
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2018, 90 : 91 - 98
  • [5] Investigation on the ultrasonic propagation mechanism and its application on air-source heat pump defrosting
    Tan, Haihui
    Xu, Guanghua
    Tao, Tangfei
    Zhang, Sicong
    Luo, Ailing
    APPLIED THERMAL ENGINEERING, 2016, 107 : 479 - 492
  • [6] Application and analysis of a new air-source heat pump in Beijing
    Huang, XW
    Wang, RX
    Li, DY
    2ND ASIAN CONFERENCE ON REFRIGERATION AND AIR-CONDITIONING, PROCEEDINGS: NEW CONTRIBUTION TO ASIAN SUSTAINABLE DEVELOPMENT, 2004, : 282 - 289
  • [7] Cascade air-source heat pump with R410A single fluid
    Yang Y.-A.
    Li R.
    Li K.
    Sun T.
    Li, Ruishen (ruishli@yeah.net), 1812, Materials China (71): : 1812 - 1821
  • [8] Investigation on the air-source chemisorption heat pump for the severely cold regions
    Gao, Peng
    Wang, Liwei
    APPLIED THERMAL ENGINEERING, 2020, 179
  • [9] NEW AIR-SOURCE HEAT PUMP SYSTEM
    MATSUDA, T
    MIYAMOTO, S
    MINOSHIMA, Y
    ASHRAE JOURNAL-AMERICAN SOCIETY OF HEATING REFRIGERATING AND AIR-CONDITIONING ENGINEERS, 1978, 20 (08): : 32 - 35
  • [10] Experimental investigation of an Air Source Heat Pump
    Talpiga, Mugurel Florin
    Iordache, Florin
    Mandric, Eugen
    SUSTAINABLE SOLUTIONS FOR ENERGY AND ENVIRONMENT (EENVIRO 2018), 2019, 85