AI-powered trustable and explainable fall detection system using transfer learning

被引:2
|
作者
Patel, Aryan Nikul [1 ]
Murugan, Ramalingam [2 ]
Maddikunta, Praveen Kumar Reddy [2 ]
Yenduri, Gokul [3 ]
Jhaveri, Rutvij H. [4 ]
Zhu, Yaodong [5 ]
Gadekallu, Thippa Reddy [6 ,7 ,8 ]
机构
[1] Vellore Inst Technol, Sch Comp Sci & Engn, Vellore, India
[2] Vellore Inst Technol, Sch Comp Sci Engn & Informat Syst, Vellore, India
[3] VIT AP Univ, Sch Comp Sci & Engn, Amaravati 522237, Andhra Pradesh, India
[4] Pandit Deendayal Energy Univ, Sch Technol, Gandhinagar, Gujarat, India
[5] Jiaxing Univ, Sch Informat Sci & Engn, Jiaxing 314001, Peoples R China
[6] Zhejiang A&F Univ, Coll Math & Comp Sci, Hangzhou 311300, Peoples R China
[7] Lovely Profess Univ, Div Res & Dev, Phagwara, India
[8] Chitkara Univ, Inst Engn & Technol, Ctr Res Impact & Outcome, Rajpura 140401, Punjab, India
关键词
Artificial intelligence; Explainable artificial intelligence; Transfer learning; Deep neural networks; Fall detection; WEARABLE SENSORS; RECOGNITION; MACHINE;
D O I
10.1016/j.imavis.2024.105164
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accidental falls pose a significant public health challenge, especially among vulnerable populations. To address this issue, comprehensive research on fall detection and rescue systems is essential. Vision-based technologies, with their promising potential, offer an effective means to detect falls. This research paper presents a cuttingedge fall detection methodology aimed at enhancing individual safety and well-being. The proposed methodology utilizes deep neural networks, leveraging their capabilities to drive advancements in fall detection. To overcome data limitations and computational efficiency concerns, this study employ transfer learning by finetuning pre-trained models on large-scale image datasets for fall detection. This approach significantly enhances model performance, enabling better generalization and accuracy, especially in real-time applications with constrained resources. Notably, the methodology achieved an impressive test accuracy of 98.15%. Additionally, the incorporation of Explainable Artificial Intelligence (XAI) techniques is used to ensure transparent and trustworthy decision-making in fall detection using deep learning models, especially in critical healthcare contexts for vulnerable individuals. XAI provides valuable insights into complex model architectures and parameters, enabling a deeper understanding of fall identification patterns. To evaluate the effectiveness of this approach, a rigorous experimentation was conducted using a diverse dataset containing real-world fall and nonfall scenarios. The results demonstrate substantial improvements in both accuracy and interpretability, confirming the superiority of this method over conventional fall detection approaches.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] An AI-Powered Network Threat Detection System
    Wang, Bo-Xiang
    Chen, Jiann-Liang
    Yu, Chiao-Lin
    IEEE ACCESS, 2022, 10 : 54029 - 54037
  • [2] Enhancing Software Modeling Learning with AI-Powered ScaffoldingEnhancing Software Modeling Learning with AI-Powered Scaffolding
    Ardimento, Pasquale
    Bernardi, Mario Luca
    Cimitile, Marta
    Scalera, Michele
    ACM/IEEE 27TH INTERNATIONAL CONFERENCE ON MODEL DRIVEN ENGINEERING LANGUAGES AND SYSTEMS: COMPANION PROCEEDINGS, MODELS 2024, 2024, : 103 - 106
  • [3] AI-Powered Ransomware Detection Framework
    Poudyal, Subash
    Dasgupta, Dipankar
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 1154 - 1161
  • [4] AI-Powered IoT System at the Edge
    Chen, Yiran
    Li, Ang
    Yang, Huanrui
    Zhang, Tunhou
    Yang, Yuewei
    Li, Hai
    Banerjee, Suman
    Pajic, Miroslav
    2021 IEEE THIRD INTERNATIONAL CONFERENCE ON COGNITIVE MACHINE INTELLIGENCE (COGMI 2021), 2021, : 242 - 251
  • [5] Explainable Edge Computing in a Distributed AI-Powered Autonomous Vehicular Networks
    Mahajan, Palvi
    Aujla, Gagangeet Singh
    Krishna, C. Rama
    2024 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS 2024, 2024, : 1195 - 1200
  • [6] Towards AI-powered personalization in MOOC learning
    Yu, Han
    Miao, Chunyan
    Leung, Cyril
    White, Timothy John
    NPJ SCIENCE OF LEARNING, 2017, 2 (01)
  • [7] Towards AI-powered personalization in MOOC learning
    Han Yu
    Chunyan Miao
    Cyril Leung
    Timothy John White
    npj Science of Learning, 2
  • [8] AI-powered banana diseases and pest detection
    Michael Gomez Selvaraj
    Alejandro Vergara
    Henry Ruiz
    Nancy Safari
    Sivalingam Elayabalan
    Walter Ocimati
    Guy Blomme
    Plant Methods, 15
  • [9] From Eye Tracking to AI-Powered Learning
    Zheng, Sam
    COMMUNICATIONS OF THE ACM, 2024, 67 (01) : 7 - 7
  • [10] AI-powered banana diseases and pest detection
    Gomez Selvaraj, Michael
    Vergara, Alejandro
    Ruiz, Henry
    Safari, Nancy
    Elayabalan, Sivalingam
    Ocimati, Walter
    Blomme, Guy
    PLANT METHODS, 2019, 15 (01)