An Adaptive Surrogate-Assisted Particle Swarm Optimization Algorithm Combining Effectively Global and Local Surrogate Models and Its Application

被引:0
|
作者
Qu, Shaochun [1 ]
Liu, Fuguang [1 ]
Cao, Zijian [1 ]
机构
[1] Xian Technol Univ, Sch Comp Sci & Engn, Xian 710021, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 17期
关键词
surrogate model; model evaluation; parameter adaptive control; particle swarm optimization; EVOLUTIONARY ALGORITHM; CONVERGENCE;
D O I
10.3390/app14177853
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Numerous surrogate-assisted evolutionary algorithms have been proposed for expensive optimization problems. However, each surrogate model has its own characteristics and different applicable situations, which caused a serious challenge for model selection. To alleviate this challenge, this paper proposes an adaptive surrogate-assisted particle swarm optimization (ASAPSO) algorithm by effectively combining global and local surrogate models, which utilizes the uncertainty level of the current population state to evaluate the approximation ability of the surrogate model in its predictions. In ASAPSO, the transformation between local and global surrogate models is controlled by an adaptive Gaussian distribution parameter with a gauge of the advisability to improve the search process with better local exploration and diversity in uncertain solutions. Four expensive optimization benchmark functions and an airfoil aerodynamic real-world engineering optimization problem are utilized to validate the effectiveness and performance of ASAPSO. Experimental results demonstrate that ASAPSO has superiority in terms of solution accuracy compared with state-of-the-art algorithms.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] An Adaptive Model Selection Strategy for Surrogate-Assisted Particle Swarm Optimization Algorithm
    Yu, Haibo
    Sun, Chaoli
    Tan, Yin
    Zeng, Jianchao
    Jin, Yaochu
    PROCEEDINGS OF 2016 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2016,
  • [2] An adaptive surrogate-assisted particle swarm optimization for expensive problems
    Li, Xuemei
    Li, Shaojun
    SOFT COMPUTING, 2021, 25 (24) : 15051 - 15065
  • [3] An adaptive surrogate-assisted particle swarm optimization for expensive problems
    Xuemei Li
    Shaojun Li
    Soft Computing, 2021, 25 : 15051 - 15065
  • [4] Surrogate-assisted hierarchical particle swarm optimization
    Yu, Haibo
    Tan, Ying
    Zeng, Jianchao
    Sun, Chaoli
    Jin, Yaochu
    INFORMATION SCIENCES, 2018, 454 : 59 - 72
  • [5] Surrogate-Assisted Particle Swarm with Local Search for Expensive Constrained Optimization
    Regis, Rommel G.
    BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS, BIOMA 2018, 2018, 10835 : 246 - 257
  • [6] A two-layer surrogate-assisted particle swarm optimization algorithm
    Sun, Chaoli
    Jin, Yaochu
    Zeng, Jianchao
    Yu, Yang
    SOFT COMPUTING, 2015, 19 (06) : 1461 - 1475
  • [7] A two-layer surrogate-assisted particle swarm optimization algorithm
    Chaoli Sun
    Yaochu Jin
    Jianchao Zeng
    Yang Yu
    Soft Computing, 2015, 19 : 1461 - 1475
  • [8] A dynamic adaptive hybrid surrogate-assisted particle swarm optimization algorithm for complex system design optimization
    You, Xiongxiong
    Zhang, Mengya
    Niu, Zhanwen
    ENGINEERING COMPUTATIONS, 2022, 39 (07) : 2505 - 2531
  • [9] A fast surrogate-assisted particle swarm optimization algorithm for computationally expensive problems
    Li, Fan
    Shen, Weiming
    Cai, Xiwen
    Gao, Liang
    Wang, G. Gary
    APPLIED SOFT COMPUTING, 2020, 92
  • [10] Surrogate-Assisted Ensemble Social Learning Particle Swarm Optimization
    Hu, Xiao-Min
    Su, Wen-Wei
    Li, Min
    2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 2650 - 2655