Effect of the daily duration of calf contact on the dam's ultradian and circadian activity rhythms

被引:1
|
作者
Schneider, Marie [1 ,2 ]
Umstaetter, Christina [3 ]
Nasser, Hassan-Roland [4 ]
Gallmann, Eva [2 ]
Barth, Kerstin [1 ]
机构
[1] Johann Heinrich Thunen Inst, Fed Res Inst Rural Areas Forestry & Fisheries, Inst Organ Farming, D-23847 Westerau, Germany
[2] Univ Hohenheim, Ctr LivestockTechnol, Garbenstr 9, D-70599 Stuttgart, Germany
[3] Fed Res Inst Rural Areas Forestry & Fisheries, Johann Heinrich Thunen Inst, Inst Agr Technol, D-38116 Braunschweig, Germany
[4] Agroscope, Digital Prod, CH-8356 Ettenhausen, Switzerland
来源
JDS COMMUNICATIONS | 2024年 / 5卷 / 05期
关键词
DAIRY-COW; CATTLE; BEHAVIOR;
D O I
10.3168/jdsc.2023-0465
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
Cow-calf contact systems are attracting increasing interest among farmers and some are already being implemented into dairy farms. However, a comprehensive assessment of animal welfare in these systems is lacking. One reason for this is the large amount of time required for behavioral observations. However, the increased use of sensors in herd management assistance systems offers new opportunities for automated monitoring of animal welfare. For example, accelerometers can be used to collect activity data for a specific pattern analysis. In this study, ultradian and circadian rhythms of cows were analyzed. The degree of functional coupling (DFC; range of values: 0-1) expresses the extent to which the activity is cyclic to 24 h, and therefore harmonically synchronized with the periodicity of the environment. A DFC of 1 indicates complete adaptation of the cows' activity rhythm to the 24-h day. Additionally, the diurnality index (DI) is used to examine the distribution of diurnal and nocturnal activity. A DI of 1 indicates complete diurnal activity, whereas -1 indicates complete nocturnal activity. The rhythms of healthy and well-adapted animals show high adaptation to the 24-h day, whereas external or endogenous effects can interfere with these rhythms. Although contact with their calves allows cows to behave more naturally, it is possible that calves demanding their mothers' attention may affect the cows' rhythmicity, similar to other external factors. To test this hypothesis, 2 herds of German Holstein cows housed in a mirrored loose housing system were included in the study, which was conducted over 2 experimental periods. Three treatments were applied, differing in contact between cow and calf. The contact dams had either whole-day or daytime contact with their calves, and the no-contact cows were separated from their calves directly postpartum. Accelerometers were used to record and analyze the cows' activity between 59 and 83 DIM, thus excluding the calving and weaning phases. Generalized linear mixed models were used to estimate the effect of treatment (no, daytime, and whole-day contact) on DFC and DI, considering the effects of estrus, deviation of milking start in the evening, and parity (primi- vs. multiparous). Finally, the harmonic period lengths of the activity patterns were extracted to analyze the distribution of the primarily expressed period lengths of the different treatments. In general, the average activity patterns of the cows did not differ between the treatments. However, dams with whole-day contact showed a lower activity peak before milking but a higher activity after evening milking. Nevertheless, the DFC and DI were similar in each group. During estrus, the chance of a maximum DFC decreased and the DI increased. Whole-day contact dams showed the most significant harmonic periods (33 per cow). Nevertheless, the primarily expressed period length (3.4 h) was equal in each treatment. In conclusion, neither contact with the calf nor its daily duration affected the ultradian and circadian rhythms of dams compared with cows separated from their calf.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Circadian and ultradian rhythms in locomotory activity of inbred strains of mice
    Pasquali, Vittorio
    Capasso, Anna
    Renzi, Paolo
    BIOLOGICAL RHYTHM RESEARCH, 2010, 41 (01) : 63 - 74
  • [2] Circadian and ultradian activity rhythms in manatee (Trichechus manatus manatus) in captivity
    Eugenia Holguin-Medina, Victoria
    Fontenele-Araujo, John
    Manuel Alcaraz-Romero, Victor
    Francisco Cortes, Jose
    Munoz-Delgado, Jairo
    BIOLOGICAL RHYTHM RESEARCH, 2015, 46 (05) : 631 - 645
  • [3] Ultradian and circadian body temperature and activity rhythms in chronic MPTP treated monkeys
    Almirall, H
    Bautista, V
    Sánchez-Bahillo, A
    Trinidad-Herrero, M
    NEUROPHYSIOLOGIE CLINIQUE-CLINICAL NEUROPHYSIOLOGY, 2001, 31 (03): : 161 - 170
  • [4] Diminished circadian and ultradian rhythms of human brain activity in pathological tissue in vivo
    Thornton, Christopher
    Panagiotopoulou, Mariella
    Chowdhury, Fahmida A.
    Diehl, Beate
    Duncan, John S.
    Gascoigne, Sarah J.
    Besne, Guillermo
    McEvoy, Andrew W.
    Miserocchi, Anna
    Smith, Billy C.
    de Tisi, Jane
    Taylor, Peter N.
    Wang, Yujiang
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [5] CIRCADIAN-RHYTHMS OF ENZYME AND RUNNING ACTIVITY UNDER ULTRADIAN LIGHTING SCHEDULE
    DEGUCHI, T
    AMERICAN JOURNAL OF PHYSIOLOGY, 1977, 232 (04): : E375 - E381
  • [7] Circadian and ultradian rhythms in normal mice and in a mouse model of Huntington's disease
    Griffis, Christopher G.
    Mistry, Janki
    Islam, Kendall
    Cutler, Tamara
    Colwell, Christopher S.
    Garfinkel, Alan
    CHRONOBIOLOGY INTERNATIONAL, 2022, 39 (04) : 513 - 524
  • [8] Diminished circadian and ultradian rhythms of brain activity in pathological brain tissue in human epilepsy
    Wang, Y.
    Panagiotopoulou, M.
    Thornton, C.
    Diehl, B.
    Duncan, J.
    Chowdhury, F.
    McEvoy, A.
    Miserocchi, A.
    de Tisi, J.
    Taylor, P.
    EPILEPSIA, 2023, 64 : 509 - 509
  • [9] Cardiac activity of Nephrops norvegicus (Decapoda: Nephropidae):: The relationship between circadian and ultradian rhythms
    Aguzzi, J
    Chiesa, JJ
    JOURNAL OF CRUSTACEAN BIOLOGY, 2005, 25 (04) : 577 - 584
  • [10] SCN LESIONS ABOLISH ULTRADIAN AND CIRCADIAN COMPONENTS OF ACTIVITY RHYTHMS IN LEW/ZTM RATS
    WOLLNIK, F
    TUREK, FW
    AMERICAN JOURNAL OF PHYSIOLOGY, 1989, 256 (05): : R1027 - R1039