Predictive Analysis of Cervical Cancer Using Machine Learning Techniques

被引:0
|
作者
Kumawat, Gaurav [1 ]
Vishwakarma, Santosh Kumar [1 ]
Chakrabarti, Prasun [2 ]
机构
[1] Manipal Univ Jaipur, Dept Comp Sci & Engn, Jaipur 303007, Rajasthan, India
[2] Sir Padampat Singhania Univ, Dept Comp Sci & Engn, Udaipur 313601, Rajasthan, India
关键词
Cervical cancer; Prediction; Machine learning; SMOTE; Voting; PROGNOSIS;
D O I
10.1007/978-981-97-1320-2_40
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Precautionary measures are less expensive than medical therapy in nearly every country. Any disease that is discovered early on has a higher probability of successfully treating its patient than one that is discovered later in its development. Any therapy we could provide them with would be helpful and would make their lives more pleasant if we did not know how to cure them. Cervical cancer is one of these diseases; it is the fourth-most common kind among women globally. The use of hormonal contraceptives and age are two of the numerous variables that raise the risk of cervical cancer. Cervical cancer mortality rates decrease, and recovery rates are increased with early diagnosis. The goal of this study is to develop a model that can sensitively and correctly detect cervical cancer using machine learning techniques. The voting mechanism will be used that integrates three classifiers logistic regression, decision tree, and random forest. The imbalanced dataset issue was resolved by using SMOTE in conjunction with principal component analysis (PCA) to eliminate dimensions that have no bearing on model accuracy. Next, to avoid the overfitting issue, a stratified tenfold cross-validation procedure was employed. The four target variables in this dataset-Hinselmann, Cytology, Schiller, and Biopsy-are linked to 32 risk factors. For each of the four target variables, we discovered that applying the voting classifier, SMOTE, and PCA approaches helped increase the prediction models' accuracy, ROC-AUC, and sensitivity to greater rates. Accuracy, PPA, and sensitivity ratios increased in the SMOTE-voting model for all target variables by 2.45-5.74%, 2.33-26.84%, and 33.98-42.54%, respectively.
引用
收藏
页码:501 / 516
页数:16
相关论文
共 50 条
  • [1] Predictive Analysis Of Breast Cancer Using Machine Learning Techniques
    Agrawal, Rashmi
    INGENIERIA SOLIDARIA, 2019, 15 (29):
  • [2] Cervical Cancer Severity Characterization Using Machine Learning Techniques
    Jadhav, Varsha S.
    Yakkundimath, Rajesh
    Konnurmath, Guruprasad
    INDIAN JOURNAL OF GYNECOLOGIC ONCOLOGY, 2024, 22 (04)
  • [3] EARLY PREDICTION OF CERVICAL CANCER USING MACHINE LEARNING TECHNIQUES
    Al-Batah, Mohammad Subhi
    Alzyoud, Mazen
    Alazaidah, Raed
    Toubat, Malek
    Alzoubi, Haneen
    Olaiyat, Areej
    JORDANIAN JOURNAL OF COMPUTERS AND INFORMATION TECHNOLOGY, 2022, 8 (04): : 357 - 369
  • [4] Hybrid Model for Detection of Cervical Cancer Using Causal Analysis and Machine Learning Techniques
    Lilhore, Umesh Kumar
    Poongodi, M.
    Kaur, Amandeep
    Simaiya, Sarita
    Algarni, Abeer D.
    Elmannai, Hela
    Vijayakumar, V.
    Tunze, Godwin Brown
    Hamdi, Mounir
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2022, 2022
  • [5] A Predictive Analysis of Heart Rates Using Machine Learning Techniques
    Oyeleye, Matthew
    Chen, Tianhua
    Titarenko, Sofya
    Antoniou, Grigoris
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (04)
  • [6] Comparative Analysis of Machine Learning Techniques Using Predictive Modeling
    Khandelwal, Ritu
    Goyal, Hemlata
    Shekhawat, Rajveer S.
    Recent Advances in Computer Science and Communications, 2022, 15 (03) : 466 - 477
  • [7] Mental Health Predictive Analysis Using Machine-Learning Techniques
    Jain, Vanshika
    Kumari, Ritika
    Bansal, Poonam
    Dev, Amita
    SMART TRENDS IN COMPUTING AND COMMUNICATIONS, VOL 4, SMARTCOM 2024, 2024, 948 : 103 - 115
  • [8] Prediction of Cervical Cancer from Behavior Risk Using Machine Learning Techniques
    Akter L.
    Ferdib-Al-Islam
    Islam M.M.
    Al-Rakhami M.S.
    Haque M.R.
    SN Computer Science, 2021, 2 (3)
  • [9] Cervical Cancer Diagnostics Using Machine Learning Algorithms and Class Balancing Techniques
    Glucina, Matko
    Lorencin, Ariana
    Andelic, Nikola
    Lorencin, Ivan
    APPLIED SCIENCES-BASEL, 2023, 13 (02):
  • [10] Data Driven Prognosis of Cervical Cancer Using ClassBalancing and Machine Learning Techniques
    Arora M.
    Dhawan S.
    Singh K.
    EAI Endorsed Transactions on Energy Web, 2020, 7 (30) : 1 - 9