Using machine learning methods and leveraging electronic health records for acute kidney injury detection and management

被引:0
|
作者
Ghazi, L. [1 ]
El-Khoury, J. [2 ]
机构
[1] Univ Alabama Birmingham, Birmingham, AL USA
[2] Yale Univ, New Haven, CT 06520 USA
关键词
D O I
10.1016/j.cca.2024.118598
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
引用
收藏
页数:1
相关论文
共 50 条
  • [1] Predicting Acute Kidney Injury: A Machine Learning Approach Using Electronic Health Records
    Abdullah, Sheikh S.
    Rostamzadeh, Neda
    Sedig, Kamran
    Garg, Amit X.
    McArthur, Eric
    INFORMATION, 2020, 11 (08)
  • [2] Prediction of Acute Kidney Injury in the Emergency Department Using Electronic Health Record Data and Machine Learning Methods
    Hinson, J. S.
    Martinez, D. A.
    Grams, M. S.
    Levin, S.
    ANNALS OF EMERGENCY MEDICINE, 2018, 72 (04) : S154 - S154
  • [3] Seasonality of acute kidney injury phenotypes in England: an unsupervised machine learning classification study of electronic health records
    Hikaru Bolt
    Anne Suffel
    Julian Matthewman
    Frank Sandmann
    Laurie Tomlinson
    Rosalind Eggo
    BMC Nephrology, 24
  • [4] Seasonality of acute kidney injury phenotypes in England: an unsupervised machine learning classification study of electronic health records
    Bolt, Hikaru
    Suffel, Anne
    Matthewman, Julian
    Sandmann, Frank
    Tomlinson, Laurie
    Eggo, Rosalind
    BMC NEPHROLOGY, 2023, 24 (01)
  • [5] Leveraging electronic medical records and machine learning for early detection of ovarian cancer
    Giannakeas, Vasily
    Kotsopoulos, Joanne
    Narod, Steven
    INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2024, 34 (SUPPL_1) : A404 - A405
  • [6] Leveraging Big Data and Electronic Health Records to Enhance Novel Approaches to Acute Kidney Injury Research and Care
    Sutherland, Scott M.
    Goldstein, Stuart L.
    Bagshaw, Sean M.
    BLOOD PURIFICATION, 2017, 44 (01) : 68 - 76
  • [7] Leveraging Electronic Health Records to Predict the Risk of Acute Kidney Injury after Allogeneic Hematopoietic Cell Transplantation
    Bischoff, Elena
    Kirilov, Nikola
    LIFE-BASEL, 2024, 14 (08):
  • [8] A machine learning approach to leveraging electronic health records for enhanced omics analysis
    Mataraso, Samson J.
    Espinosa, Camilo A.
    Seong, David
    Reincke, S. Momsen
    Berson, Eloise
    Reiss, Jonathan D.
    Kim, Yeasul
    Ghanem, Marc
    Shu, Chi-Hung
    James, Tomin
    Tan, Yuqi
    Shome, Sayane
    Stelzer, Ina A.
    Feyaerts, Dorien
    Wong, Ronald J.
    Shaw, Gary M.
    Angst, Martin S.
    Gaudilliere, Brice
    Stevenson, David K.
    Aghaeepour, Nima
    NATURE MACHINE INTELLIGENCE, 2025, 7 (02) : 293 - 306
  • [9] Leveraging Natural Language Processing and Machine Learning Methods for Adverse Drug Event Detection in Electronic Health/Medical Records: A Scoping Review
    Golder, Su
    Xu, Dongfang
    O'Connor, Karen
    Wang, Yunwen
    Batra, Mahak
    Hernandez, Graciela Gonzalez
    DRUG SAFETY, 2025, 48 (04) : 321 - 337
  • [10] Detection of Drug–Drug Interactions Inducing Acute Kidney Injury by Electronic Health Records Mining
    Yannick Girardeau
    Claire Trivin
    Pierre Durieux
    Christine Le Beller
    Lillo-Le Louet Agnes
    Antoine Neuraz
    Patrice Degoulet
    Paul Avillach
    Drug Safety, 2015, 38 : 799 - 809