Evolutionary Multi/Many-Objective Optimisation via Bilevel Decomposition

被引:0
|
作者
Jiang, Shouyong [1 ,2 ]
Guo, Jinglei [3 ]
Wang, Yong [1 ]
Yang, Shengxiang [4 ]
机构
[1] Cent South Univ, Sch Automat, Changsha 410083, Peoples R China
[2] Univ Aberdeen, Dept Comp Sci, Aberdeen AB24 3FX, Scotland
[3] Cent China Normal Univ, Sch Comp Sci, Wuhan 430079, Peoples R China
[4] De Montfort Univ, Sch Comp Sci & Informat, Leicester LE1 9BH, England
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
Bilevel decomposition; evolutionary algorithm; many-objective optimisation; multi-objective optimisation; ALGORITHM; MOEA/D; SELECTION;
D O I
10.1109/JAS.2024.124515
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Decomposition of a complex multi-objective optimisation problem (MOP) to multiple simple subMOPs, known as M2M for short, is an effective approach to multi-objective optimisation. However, M2M facilitates little communication/collaboration between subMOPs, which limits its use in complex optimisation scenarios. This paper extends the M2M framework to develop a unified algorithm for both multi-objective and many-objective optimisation. Through bilevel decomposition, an MOP is divided into multiple subMOPs at upper level, each of which is further divided into a number of single-objective subproblems at lower level. Neighbouring subMOPs are allowed to share some subproblems so that the knowledge gained from solving one sub-MOP can be transferred to another, and eventually to all the sub-MOPs. The bilevel decomposition is readily combined with some new mating selection and population update strategies, leading to a high-performance algorithm that competes effectively against a number of state-of-the-arts studied in this paper for both multi- and many-objective optimisation. Parameter analysis and component analysis have been also carried out to further justify the proposed algorithm.
引用
收藏
页码:1973 / 1986
页数:14
相关论文
共 50 条
  • [1] Evolutionary Multi/Many-Objective Optimisation via Bilevel Decomposition
    Shouyong Jiang
    Jinglei Guo
    Yong Wang
    Shengxiang Yang
    IEEE/CAA Journal of Automatica Sinica, 2024, 11 (09) : 1973 - 1986
  • [2] An Evolutionary Many-Objective Optimisation Algorithm with Adaptive Region Decomposition
    Liu, Hai-Lin
    Chen, Lei
    Zhang, Qingfu
    Deb, Kalyanmoy
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 4763 - 4769
  • [3] Evolutionary many-objective optimisation: Many once or one many?
    Hughes, EJ
    2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 222 - 227
  • [4] Evolutionary many-objective optimisation: An exploratory analysis
    Purshouse, RC
    Fleming, PJ
    CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 2066 - 2073
  • [5] A Fuzzy Decomposition-Based Multi/Many-Objective Evolutionary Algorithm
    Liu, Songbai
    Lin, Qiuzhen
    Tan, Kay Chen
    Gong, Maoguo
    Coello, Carlos A. Coello
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (05) : 3495 - 3509
  • [6] A Diversity Management Operator for Evolutionary Many-Objective Optimisation
    Adra, Salem F.
    Feming, Peter J.
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION: 5TH INTERNATIONAL CONFERENCE, EMO 2009, 2009, 5467 : 81 - +
  • [7] Evolutionary multi and many-objective optimization via clustering for environmental selection
    Liu, Songbai
    Zheng, Junhao
    Lin, Qiuzhen
    Tan, Kay Chen
    INFORMATION SCIENCES, 2021, 578 : 930 - 949
  • [8] A decomposition-based evolutionary algorithm for scalable multi/many-objective optimization
    Jiaxin Chen
    Jinliang Ding
    Kay Chen Tan
    Qingda Chen
    Memetic Computing, 2021, 13 : 413 - 432
  • [9] A decomposition-based evolutionary algorithm for scalable multi/many-objective optimization
    Chen, Jiaxin
    Ding, Jinliang
    Tan, Kay Chen
    Chen, Qingda
    MEMETIC COMPUTING, 2021, 13 (03) : 413 - 432
  • [10] A many-objective evolutionary algorithm based on rotation and decomposition
    Zou, Juan
    Liu, Jing
    Yang, Shengxiang
    Zheng, Jinhua
    Swarm and Evolutionary Computation, 2021, 60