Computing Twin-Width Parameterized by the Feedback Edge Number

被引:0
|
作者
Balaban, Jakub [1 ]
Ganian, Robert [2 ]
Rocton, Mathis [2 ]
机构
[1] Masaryk Univ, Fac Informat, Brno, Czech Republic
[2] TU Wien, Algorithms & Complex Grp, Vienna, Austria
基金
欧盟地平线“2020”;
关键词
twin-width; parameterized complexity; kernelization; feedback edge number; TREEWIDTH;
D O I
10.4230/LIPIcs.STACS.2024.7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The problem of whether and how one can compute the twin-width of a graph - along with an accompanying contraction sequence - lies at the forefront of the area of algorithmic model theory. While significant effort has been aimed at obtaining a fixed-parameter approximation for the problem when parameterized by twin-width, here we approach the question from a different perspective and consider whether one can obtain (near-)optimal contraction sequences under a larger parameterization, notably the feedback edge number k. As our main contributions, under this parameterization we obtain (1) a linear bikernel for the problem of either computing a 2-contraction sequence or determining that none exists and (2) an approximate fixed-parameter algorithm which computes an l-contraction sequence (for an arbitrary specified l) or determines that the twin-width of the input graph is at least l. These algorithmic results rely on newly obtained insights into the structure of optimal contraction sequences, and as a byproduct of these we also slightly tighten the bound on the twin-width of graphs with small feedback edge number.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Computing Twin-Width Parameterized by the Feedback Edge Number
    Balabán, Jakub
    Ganian, Robert
    Rocton, Mathis
    Leibniz International Proceedings in Informatics, LIPIcs, 289
  • [2] Computing Twin-width with SAT and Branch & Bound
    Schidler, Andre
    Szeider, Stefan
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 2013 - 2021
  • [3] A Contraction Tree SAT Encoding for Computing Twin-Width
    Horev, Yinon
    Shay, Shiraz
    Cohen, Sarel
    Friedrich, Tobias
    Issac, Davis
    Kamma, Lior
    Niklanovits, Aikaterini
    Simonov, Kirill
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT II, PAKDD 2024, 2024, 14646 : 444 - 456
  • [4] TWIN-WIDTH AND PERMUTATIONS
    Bonnet, Edouard
    Nesetril, Jaroslav
    De Mendez, Patrice Ossona
    Siebertz, Sebastian
    Thomasse, Stephan
    LOGICAL METHODS IN COMPUTER SCIENCE, 2024, 20 (03) : 1 - 25
  • [5] A SAT Approach to Twin-Width
    Schidler, Andre
    Szeider, Stefan
    2022 PROCEEDINGS OF THE SYMPOSIUM ON ALGORITHM ENGINEERING AND EXPERIMENTS, ALENEX, 2022, : 67 - 77
  • [6] Twin-width of random graphs
    Ahn, Jungho
    Chakraborti, Debsoumya
    Hendrey, Kevin
    Kim, Donggyu
    Oum, Sang-il
    RANDOM STRUCTURES & ALGORITHMS, 2024, 65 (04) : 794 - 831
  • [7] BOUNDS FOR THE TWIN-WIDTH OF GRAPHS
    Ahn, Jungho
    Hendrey, Kevin
    Kim, Donggyu
    Oum, Sang-Il
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (03) : 2352 - 2366
  • [8] Twin-width and Polynomial Kernels
    Bonnet, Edouard
    Kim, Eun Jung
    Reinald, Amadeus
    Thomasse, Stephan
    Watrigant, Remi
    ALGORITHMICA, 2022, 84 (11) : 3300 - 3337
  • [9] Twin-width and Polynomial Kernels
    Édouard Bonnet
    Eun Jung Kim
    Amadeus Reinald
    Stéphan Thomassé
    Rémi Watrigant
    Algorithmica, 2022, 84 : 3300 - 3337
  • [10] Twin-width of graphs on surfaces
    Král, Daniel
    Pekárková, Kristýna
    Štorgel, Kenny
    arXiv, 2023,