Riemann-Roch for the ring Z

被引:0
|
作者
Connes, Alain [1 ,2 ]
Consani, Caterina [3 ]
机构
[1] Coll France, 3 Rue Ulm, F-75005 Paris, France
[2] IHES, 35 Rte Chartres, F-91440 Bures Sur Yvette, France
[3] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
关键词
D O I
10.5802/crmath.543
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that by working over the absolute base S (the ca tegoric al version of the sphere spectrum) instead of S[+/- 1] improves our previous Riemann-Roch formula for Spec Z. The formula equates the (integer valued) Euler characteristic of an Arakelov divisor with the sum of the degree of the divisor (using logarithms with base 2) and the number 1, thus confirming the understanding of the ring Z as a ring of polynomials in one variable over the absolute base S, namely S[X X ],1 + 1 = X + X (2) .
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Riemann-Roch for Spec Z
    Connes, Alain
    Consani, Caterina
    BULLETIN DES SCIENCES MATHEMATIQUES, 2023, 187
  • [2] The Riemann-Roch Theorem
    Popescu-Pampu, Patrick
    WHAT IS THE GENUS?, 2016, 2162 : 43 - 44
  • [3] A Riemann-Roch theorem
    Das, Mrinal Kanti
    Mandal, Satya
    JOURNAL OF ALGEBRA, 2006, 301 (01) : 148 - 164
  • [4] On the theorem of Riemann-Roch
    Maxwell, EA
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1937, 33 : 26 - 34
  • [5] An application of the Riemann-Roch theorem
    ShiKun Wang
    HuiPing Zhang
    Science in China Series A: Mathematics, 2008, 51 : 765 - 772
  • [6] An application of the Riemann-Roch theorem
    Wang ShiKun
    Zhang HuiPing
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (04): : 765 - 772
  • [7] Serre and the Riemann-Roch Problem
    Popescu-Pampu, Patrick
    WHAT IS THE GENUS?, 2016, 2162 : 139 - 141
  • [8] RIEMANN-ROCH THEOREM BY DESINGULARIZATION
    ANGENIOL, B
    ELZEIN, F
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1988, 116 (04): : 385 - 400
  • [9] An application of the Riemann-Roch theorem
    WANG ShiKun~1 ZHANG HuiPing~(2+) 1 KLMM and IAM
    AMSS
    Chinese Academy of Sciences
    Beijing 100080
    China
    2 School of Information
    Renmin University of China
    Beijing 100872
    Science in China(Series A:Mathematics), 2008, (04) : 765 - 772
  • [10] RIEMANN-ROCH TRANSFORMATIONS AND COBORDISMS
    WURGLER, U
    COMMENTARII MATHEMATICI HELVETICI, 1971, 46 (04) : 414 - &